
PREFACE

Operating systems are an essential part of any computer system. Similarly,
a course on operating systems is an essential part of any computer-science
education. This field is undergoing change at a breathtakingly rapid rate, as
computers are now prevalent in virtually every application, from games for
children through the most sophisticated planning tools for governments and
multinational firms. Yet the fundamental concepts remain fairly clear, and it is
on these that we base this book.

We wrote this book as a text for an introductory course in operating systems
at the junior or senior undergraduate level or at the first-year graduate level. It
provides a clear description of the concepts that underlie operating systems. As
prerequisites, we assume that the reader is familiar with basic data structures,
computer organization, and a high-level language, such as C. The hardware
topics required for an understanding of operating systems are included in
Chapter 2. For code examples, we use predominantly C as well as some
Java, but the reader can still understand the algorithms without a thorough
knowledge of these languages.

The fundamental concepts and algorithms covered in the book are often
based on those used in existing commercial operating systems. Our aim is to
present these concepts and algorithms in a general setting that is not tied to
one particular operating system. We present a large number of examples that
pertain to the most popular operating systems, including Sun Microsystems’
Solaris 2, Linux; Microsoft MS-DOS, Windows NT, and Windows 2000; DEC VMS
and TOPS-20, IBM OS/2, and the Apple Macintosh Operating System.

v

vi Preface

Concepts are presented using intuitive descriptions. Important theoretical
results are covered, but formal proofs are omitted. The bibliographical notes
contain pointers to research papers in which results were first presented and
proved, as well as references to material for further reading. In place of proofs,
figures and examples are used to suggest why we should expect the result in
question to be true.

Content of this Book

The text is organized in seven major parts:

• Overview: Chapters 1 through 3 explain what operating systems are, what
they do, and how they are designed and constructed. They explain how the
concept of an operating system has developed, what the common features
of an operating system are, what an operating system does for the user,
and what it does for the computer-system operator. The presentation is
motivational, historical, and explanatory in nature. We have avoided a
discussion of how things are done internally in these chapters. Therefore,
they are suitable for individuals or for students in lower-level classes who
want to learn what an operating system is, without getting into the details
of the internal algorithms. Chapter 2 covers the hardware topics that are
important to an understanding of operating systems. Readers well-versed
in hardware topics, including I/O, DMA, and hard-disk operation, may
choose to skim or skip this chapter.

• Process management: Chapters 4 through 8 describe the process concept
and concurrency as the heart of modern operating systems. A process
is the unit of work in a system. Such a system consists of a collection
of concurrently executing processes, some of which are operating-system
processes (those that execute system code), and the rest of which are user
processes (those that execute user code). These chapters cover methods for
process scheduling, interprocess communication, process synchronization,
and deadlock handling. Also included under this topic is a discussion of
threads.

• Storage management: Chapters 9 through 12 deal with a process in main
memory during execution. To improve both the utilization of CPU and the
speed of its response to its users, the computer must keep several processes
in memory. There are many different memory-management schemes.
These schemes reflect various approaches to memory management, and
the effectiveness of the different algorithms depends on the situation. Since
main memory is usually too small to accommodate all data and programs,
and since it cannot store data permanently, the computer system must pro-
vide secondary storage to back up main memory. Most modern computer
systems use disks as the primary on-line storage medium for information,

Preface vii

both programs and data. The file system provides the mechanism for on-
line storage of and access to both data and programs residing on the disks.
These chapters describe the classic internal algorithms and structures of
storage management. They provide a firm practical understanding of the
algorithms used—the properties, advantages, and disadvantages.

• I/O systems: Chapters 13 and 14 describe the devices that attach to a com-
puter and the multiple dimensions in which they vary. In many ways, they
are also the slowest major components of the computer. Because devices
differ so widely, the operating system needs to provide a wide range of
functionality to applications to allow them to control all aspects of the
devices. This section discusses system I/O in depth, including I/O system
design, interfaces, and internal system structures and functions. Because
devices are a performance bottleneck, performance issues are examined.
Matters related to secondary and tertiary storage are explained as well.

• Distributed systems: Chapters 15 through 17 deal with a collection of
processors that do not share memory or a clock—a distributed system.
Such a system provides the user with access to the various resources that
the system maintains. Access to a shared resource allows computation
speedup and improved data availability and reliability. Such a system also
provides the user with a distributed file system, which is a file-service
system whose users, servers, and storage devices are dispersed among
the sites of a distributed system. A distributed system must provide
various mechanisms for process synchronization and communication, for
dealing with the deadlock problem and the variety of failures that are not
encountered in a centralized system.

• Protection and security: Chapters 18 and 19 explain the processes in an
operating system that must be protected from one another’s activities. For
the purposes of protection and security, we use mechanisms that ensure
that only those processes that have gained proper authorization from the
operating system can operate on the files, memory segments, CPU, and
other resources. Protection is a mechanism for controlling the access of
programs, processes, or users to the resources defined by a computer
system. This mechanism must provide a means for specification of the
controls to be imposed, as well as a means of enforcement. Security
protects the information stored in the system (both data and code), as
well as the physical resources of the computer system, from unauthorized
access, malicious destruction or alteration, and accidental introduction of
inconsistency.

• Case studies: Chapters 20 through 22, in the book, and Appendices A
through C, on the website, integrate the concepts described in this book by
describing real operating systems. These systems include Linux, Windows
2000, FreeBSD, Mach, and Nachos. We chose Linux and FreeBSD because

viii Preface

UNIX—at one time—was almost small enough to understand, yet was not
a “toy” operating system. Most of its internal algorithms were selected for
simplicity, rather than for speed or sophistication. Both Linux and FreeBSD
are readily available to computer-science departments, so many students
have access to these systems. We chose Windows 2000 because it provides
an opportunity for us to study a modern operating system that has a design
and implementation drastically different from those of UNIX. We also cover
the Nachos System, which allows students to get their hands dirty—to take
apart the code for an operating system, to see how it works at a low level, to
build significant pieces of the operating system themselves, and to observe
the effects of their work. Chapter 22 briefly describes a few other influential
operating systems.

The Sixth Edition

As we wrote this Sixth Edition, we were guided by the many comments and
suggestions we received from readers of our previous editions, as well as by
our own observations about the rapidly changing fields of operating systems
and networking. We rewrote the material in most of the chapters by bringing
older material up to date and removing material that was no longer of interest.
We rewrote all Pascal code, used in previous editions to demonstrate certain
algorithms, into C, and we included a small amount of Java as well.

We made substantive revisions and changes in organization in many of
the chapters. Most importantly, we added two new chapters and reorganized
the distributed systems coverage. Because networking and distributed systems
have become more prevalent in operating systems, we moved some distributed
systems material, client–server, in particular, out of distributed systems chap-
ters and integrated it into earlier chapters.

• Chapter 3, Operating-System Structures, now includes a section dis-
cussing the Java virtual machine (JVM).

• Chapter 4, Processes, includes new sections describing sockets and remote
procedure calls (RPCs).

• Chapter 5, Threads, is a new chapter that covers multithreaded computer
systems. Many modern operating systems now provide features for a
process to contain multiple threads of control.

• Chapters 6 through 10 are the old Chapters 5 through 9, respectively.

• Chapter 11, File-System Interface, is the old Chapter 10. We have mod-
ified the chapter substantially, including the coverage of NFS from the
Distributed File System chapter (Chapter 16).

Preface ix

• Chapter 12 and 13 are the old Chapters 11 and 12, respectively. We have
added a new section in Chapter 13, I/O Systems, covering STREAMS.

• Chapter 14, Mass-Storage Structure, combines old Chapters 13 and 14.

• Chapter 15, Distributed System Structures, combines old Chapters 15
and 16.

• Chapter 19, Security, is the old Chapter 20.

• Chapter 20, The Linux System, is the old Chapter 22, updated to cover new
recent developments.

• Chapter 21, Windows 2000, is a new chapter.

• Chapter 22, Historical Perspective, is the old Chapter 24.

• Appendix A is the old Chapter 21 on UNIX updated to cover FreeBSD.

• Appendix B covers the Mach operating system.

• Appendix C covers the Nachos system.

The three appendices are provided online.

Teaching Supplements and Web Page

The web page for this book contains the three appendices, the set of slides that
accompanies the book, in PDF and Powerpoint format, the three case studies,
the most recent errata list, and a link to the authors home page. John Wiley &
Sons maintains the web page at

http://www.wiley.com/college/silberschatz/osc

To obtain restricted supplements, contact your local John Wiley & Sons sales
representative. You can find your representative at the “Find a Rep?” web page:
http://www.jsw-edcv.wiley.com/college/findarep

Mailing List

We provide an environment in which users can communicate among them-
selves and with us. We have created a mailing list consisting of users of our
book with the following address: os-book@research.bell-labs.com. If you wish
to be on the list, please send a message to avi@bell-labs.com indicating your
name, affiliation, and e-mail address.

x Preface

Suggestions

We have attempted to clean up every error in this new Edition, but—as hap-
pens with operating systems—a few obscure bugs may remain. We would
appreciate hearing from you about any textual errors or omissions that you
identify. If you would like to suggest improvements or to contribute exer-
cises, we would also be glad to hear from you. Please send correspondence
to Avi Silberschatz, Vice President, Information Sciences Research Center, MH
2T-310, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974 (avi@bell-
labs.com).

Acknowledgments

This book is derived from the previous editions, the first three of which were
coauthored by James Peterson. Others who helped us with previous editions
include Hamid Arabnia, Randy Bentson, David Black, Joseph Boykin, Jeff
Brumfield, Gael Buckley, P. C. Capon, John Carpenter, Thomas Casavant, Ajoy
Kumar Datta, Joe Deck, Sudarshan K. Dhall, Thomas Doeppner, Caleb Drake,
M. Raşit Eskicioğlu, Hans Flack, Robert Fowler, G. Scott Graham, Rebecca Hart-
man, Wayne Hathaway, Christopher Haynes, Mark Holliday, Richard Kieburtz,
Carol Kroll, Thomas LeBlanc, John Leggett, Jerrold Leichter, Ted Leung, Gary
Lippman, Carolyn Miller, Michael Molloy, Yoichi Muraoka, Jim M. Ng, Banu
Özden, Ed Posnak, Boris Putanec, Charles Qualline, John Quarterman, Jesse
St. Laurent, John Stankovic, Adam Stauffer, Steven Stepanek, Hal Stern, Louis
Stevens, Pete Thomas, David Umbaugh, Steve Vinoski, Tommy Wagner, John
Werth, and J. S. Weston.

We thank the following people who contributed to this edition of the book:
Bruce Hillyer reviewed and helped with the rewrite of Chapters 2, 12, 13, and
14. Mike Reiter reviewed and helped with the rewrite of Chapter 18. Parts
of Chapter 14 were derived from a paper by Hillyer and Silberschatz [1996].
Parts of Chapter 17 were derived from a paper by Levy and Silberschatz [1990].
Chapter 20 was derived from an unpublished manuscript by Stephen Tweedie.
Chapter 21 was derived from an unpublished manuscript by Cliff Martin.
Cliff Martin helped with updating the UNIX appendix to cover FreeBSD. Mike
Shapiro reviewed the Solaris information and Jim Mauro answered several
Solaris-related questions.

We thank the following people who reviewed this edition of the book:
Rida Bazzi, Arizona State University; Roy Campbell, University of Illinois-
Chicago; Gil Carrick, University of Texas at Arlington; Richard Guy, UCLA;
Max Hailperin, Gustavus Adolphus College; Ahmed Kamel, North Dakota
State University; Morty Kwestel, New Jersey Institute of Technology; Gustavo
Rodriguez-Rivera, Purdue University; Carolyn J. C. Schauble, Colorado State
University; Thomas P. Skinner, Boston University; Yannis Smaragdakis, Geor-

Preface xi

gia Tech; Larry L. Wear, California State University, Chico; James M. Westall,
Clemson University; and Yang Xiang, University of Massassachusetts.

Our Acquisitions Editors, Bill Zobrist and Paul Crockett, provided expert
guidance as we prepared this Edition. They were both assisted by Susan-
nah Barr, who managed the many details of this project smoothly. Katherine
Hepburn was our Marketing Manager. The Senior Production Editor was Ken
Santor. The cover illustrator was Susan Cyr while the cover designer was Made-
lyn Lesure. Barbara Heaney was in charge of overseeing the copy-editing and
Katie Habib copyedited the manuscript. The freelance proofreader was Katrina
Avery; the freelance indexer was Rosemary Simpson. The Senior Illustration
Coordinator was Anna Melhorn. Marilyn Turnamian helped generate figures
and update the text, Instructors Manual, and slides.

Finally, we would like to add some personal notes. Avi would like to extend
his gratitude to Krystyna Kwiecien, whose devoted care of his mother has given
him the peace of mind he needed to focus on the writing of this book; Pete,
would like to thank Harry Kasparian, and his other co-workers, who gave him
the freedom to work on this project while doing his “real job”; Greg would
like to acknowledge two significant achievements by his children during the
period he worked on this text: Tom—age 5—learned to read, and Jay—age 2
—learned to talk.

Abraham Silberschatz, Murray Hill, NJ, 2001
Peter Baer Galvin, Norton, MA, 2001
Greg Gagne, Salt Lake City, UT, 2001

CONTENTS

PART ONE OVERVIEW

Chapter 1 Introduction
1.1 What Is an Operating System? 3
1.2 Mainframe Systems 7
1.3 Desktop Systems 11
1.4 Multiprocessor Systems 12
1.5 Distributed Systems 14
1.6 Clustered Systems 16
1.7 Real-Time Systems 17

1.8 Handheld Systems 19
1.9 Feature Migration 20

1.10 Computing Environments 21
1.11 Summary 23

Exercises 24
Bibliographical Notes 25

Chapter 2 Computer-System Structures
2.1 Computer-System Operation 27
2.2 I/O Structure 30
2.3 Storage Structure 34
2.4 Storage Hierarchy 38
2.5 Hardware Protection 42

2.6 Network Structure 48
2.7 Summary 51

Exercises 52
Bibliographical Notes 54

xiii

xiv Contents

Chapter 3 Operating-System Structures
3.1 System Components 55
3.2 Operating-System Services 61
3.3 System Calls 63
3.4 System Programs 72
3.5 System Structure 74
3.6 Virtual Machines 80

3.7 System Design and
Implementation 85

3.8 System Generation 88
3.9 Summary 89

Exercises 90
Bibliographical Notes 92

PART TWO PROCESS MANAGEMENT

Chapter 4 Processes
4.1 Process Concept 95
4.2 Process Scheduling 99
4.3 Operations on Processes 103
4.4 Cooperating Processes 107
4.5 Interprocess Communication 109

4.6 Communication in Client -
Server Systems 117

4.7 Summary 126
Exercises 127
Bibliographical Notes 128

Chapter 5 Threads
5.1 Overview 129
5.2 Multithreading Models 132
5.3 Threading Issues 135
5.4 Pthreads 139
5.5 Solaris 2 Threads 141
5.6 Window 2000 Threads 143

5.7 Linux Threads 144
5.8 Java Threads 145
5.9 Summary 147

Exercises 147
Bibliographical Notes 148

Chapter 6 CPU Scheduling
6.1 Basic Concepts 151
6.2 Scheduling Criteria 155
6.3 Scheduling Algorithms 157
6.4 Multiple-Processor Scheduling 169
6.5 Real-Time Scheduling 170

6.6 Algorithm Evaluation 172
6.7 Process Scheduling Models 177
6.8 Summary 184

Exercises 185
Bibliographical Notes 187

Contents xv

Chapter 7 Process Synchronization
7.1 Background 189
7.2 The Critical-Section Problem 191
7.3 Synchronization Hardware 197
7.4 Semaphores 201
7.5 Classic Problems of

Synchronization 206
7.6 Critical Regions 211

7.7 Monitors 216
7.8 OS Synchronization 223
7.9 Atomic Transactions 225

7.10 Summary 235
Exercises 236
Bibliographical Notes 240

Chapter 8 Deadlocks
8.1 System Model 243
8.2 Deadlock Characterization 245
8.3 Methods for Handling

Deadlocks 248
8.4 Deadlock Prevention 250
8.5 Deadlock Avoidance 253

8.6 Deadlock Detection 260
8.7 Recovery from Deadlock 264
8.8 Summary 266

Exercises 266
Bibliographical Notes 270

PART THREE STORAGE MANAGEMENT

Chapter 9 Memory Management
9.1 Background 273
9.2 Swapping 280
9.3 Contiguous Memory Allocation 283
9.4 Paging 287
9.5 Segmentation 303

9.6 Segmentation with Paging 309
9.7 Summary 312

Exercises 313
Bibliographical Notes 316

Chapter 10 Virtual Memory
10.1 Background 317
10.2 Demand Paging 320
10.3 Process Creation 328
10.4 Page Replacement 330
10.5 Allocation of Frames 344
10.6 Thrashing 348

10.7 Operating-System Examples 353
10.8 Other Considerations 356
10.9 Summary 363

Exercises 364
Bibliographical Notes 369

xvi Contents

Chapter 11 File-System Interface
11.1 File Concept 371
11.2 Access Methods 379
11.3 Directory Structure 383
11.4 File-System Mounting 393
11.5 File Sharing 395

11.6 Protection 402
11.7 Summary 406

Exercises 407
Bibliographical Notes 409

Chapter 12 File-System Implementation
12.1 File-System Structure 411
12.2 File-System Implementation 413
12.3 Directory Implementation 420
12.4 Allocation Methods 421
12.5 Free-Space Management 430
12.6 Efficiency and Performance 433

12.7 Recovery 437
12.8 Log-Structured File System 439
12.9 NFS 441

12.10 Summary 448
Exercises 449
Bibliographical Notes 451

PART FOUR I/O SYSTEMS

Chapter 13 I/O Systems
13.1 Overview 455
13.2 I/O Hardware 456
13.3 Application I/O Interface 466
13.4 Kernel I/O Subsystem 472
13.5 Transforming I/O to Hardware

Operations 478

13.6 STREAMS 481
13.7 Performance 483
13.8 Summary 487

Exercises 487
Bibliographical Notes 488

Chapter 14 Mass-Storage Structure
14.1 Disk Structure 491
14.2 Disk Scheduling 492
14.3 Disk Management 498
14.4 Swap-Space Management 502
14.5 RAID Structure 505
14.6 Disk Attachment 512

14.7 Stable-Storage Implementation 514
14.8 Tertiary-Storage Structure 516
14.9 Summary 526

Exercises 528
Bibliographical Notes 535

Contents xvii

PART FIVE DISTRIBUTED SYSTEMS

Chapter 15 Distributed System Structures
15.1 Background 539
15.2 Topology 546
15.3 Network Types 548
15.4 Communication 551
15.5 Communication Protocols 558
15.6 Robustness 562

15.7 Design Issues 564
15.8 An Example: Networking 566
15.9 Summary 568

Exercises 569
Bibliographical Notes 571

Chapter 16 Distributed File Systems
16.1 Background 573
16.2 Naming and Transparency 575
16.3 Remote File Access 579
16.4 Stateful Versus Stateless Service 583
16.5 File Replication 585

16.6 An Example: AFS 586
16.7 Summary 591

Exercises 592
Bibliographical Notes 593

Chapter 17 Distributed Coordination
17.1 Event Ordering 595
17.2 Mutual Exclusion 598
17.3 Atomicity 601
17.4 Concurrency Control 605
17.5 Deadlock Handling 610

17.6 Election Algorithms 618
17.7 Reaching Agreement 620
17.8 Summary 623

Exercises 624
Bibliographical Notes 625

PART SIX PROTECTION AND SECURITY

Chapter 18 Protection
18.1 Goals of Protection 629
18.2 Domain of Protection 630
18.3 Access Matrix 636
18.4 Implementation of Access

Matrix 640
18.5 Revocation of Access Rights 643

18.6 Capability-Based Systems 645
18.7 Language-Based Protection 648
18.8 Summary 654

Exercises 655
Bibliographical Notes 656

xviii Contents

Chapter 19 Security
19.1 The Security Problem 657
19.2 User Authentication 659
19.3 Program Threats 663
19.4 System Threats 666
19.5 Securing Systems and Facilities 671
19.6 Intrusion Detection 674
19.7 Cryptography 680

19.8 Computer-Security
Classifications 686

19.9 An Example: Windows NT 687
19.10 Summary 689

Exercises 690
Bibliographical Notes 691

PART SEVEN CASE STUDIES

Chapter 20 The Linux System
20.1 History 695
20.2 Design Principles 700
20.3 Kernel Modules 703
20.4 Process Management 707
20.5 Scheduling 711
20.6 Memory Management 716
20.7 File Systems 724

20.8 Input and Output 729
20.9 Interprocess Communication 732

20.10 Network Structure 734
20.11 Security 737
20.12 Summary 739

Exercises 740
Bibliographical Notes 741

Chapter 21 Windows 2000
21.1 History 743
21.2 Design Principles 744
21.3 System Components 746
21.4 Environmental Subsystems 763
21.5 File System 766

21.6 Networking 774
21.7 Programmer Interface 780
21.8 Summary 787

Exercises 787
Bibliographical Notes 788

Chapter 22 Historical Perspective
22.1 Early Systems 789
22.2 Atlas 796
22.3 XDS-940 797
22.4 THE 798
22.5 RC 4000 799

22.6 CTSS 800
22.7 MULTICS 800
22.8 OS/360 801
22.9 Mach 803

22.10 Other Systems 804

Contents xix

Appendix A The FreeBSD System (contents online)
A.1 History A807
A.2 Design Principles A813
A.3 Programmer Interface A815
A.4 User Interface A823
A.5 Process Management A827
A.6 Memory Management A831

A.7 File System A834
A.8 I/O System A842
A.9 Interprocess Communication A846

A.10 Summary A852
Exercises A852
Bibliographical Notes A853

Appendix B The Mach System (contents online)
B.1 History A855
B.2 Design Principles A857
B.3 System Components A858
B.4 Process Management A862
B.5 Interprocess Communication A868
B.6 Memory Management A874

B.7 Programmer Interface A880
B.8 Summary A881

Exercises A882
Bibliographical Notes A883
Credits A885

Appendix C The Nachos System (contents online)
C.1 Overview A888
C.2 Nachos Software Structure A890
C.3 Sample Assignments A893
C.4 Obtaining a Copy of Nachos A898

C.5 Conclusions A900
Bibliographical Notes A901
Credits A902

Bibliography 807

Credits 837

Index 839

Silberschatz, Galvin and Gagne 20021.1Operating System Concepts

Chapter 1: Introduction

� What is an Operating System?
� Mainframe Systems
� Desktop Systems
� Multiprocessor Systems
� Distributed Systems
� Clustered System
� Real -Time Systems
� Handheld Systems
� Computing Environments

Silberschatz, Galvin and Gagne 20021.2Operating System Concepts

What is an Operating System?

� A program that acts as an intermediary between a user of
a computer and the computer hardware.

� Operating system goals:
✦ Execute user programs and make solving user problems

easier.
✦ Make the computer system convenient to use.

� Use the computer hardware in an efficient manner.

Silberschatz, Galvin and Gagne 20021.3Operating System Concepts

Computer System Components

1. Hardware – provides basic computing resources (CPU,
memory, I/O devices).

2. Operating system – controls and coordinates the use of
the hardware among the various application programs for
the various users.

3. Applications programs – define the ways in which the
system resources are used to solve the computing
problems of the users (compilers, database systems,
video games, business programs).

4. Users (people, machines, other computers).

Silberschatz, Galvin and Gagne 20021.4Operating System Concepts

Abstract View of System Components

Silberschatz, Galvin and Gagne 20021.5Operating System Concepts

Operating System Definitions

� Resource allocator – manages and allocates resources.
� Control program – controls the execution of user

programs and operations of I/O devices .
� Kernel – the one program running at all times (all else

being application programs).

Silberschatz, Galvin and Gagne 20021.6Operating System Concepts

Mainframe Systems

� Reduce setup time by batching similar jobs
� Automatic job sequencing – automatically transfers

control from one job to another. First rudimentary
operating system.

� Resident monitor
✦ initial control in monitor

✦ control transfers to job
✦ when job completes control transfers pack to monitor

Silberschatz, Galvin and Gagne 20021.7Operating System Concepts

Memory Layout for a Simple Batch System

Silberschatz, Galvin and Gagne 20021.8Operating System Concepts

Multiprogrammed Batch Systems

Several jobs are kept in main memory at the same time, and the
CPU is multiplexed among them.

Silberschatz, Galvin and Gagne 20021.9Operating System Concepts

OS Features Needed for Multiprogramming

� I/O routine supplied by the system.
� Memory management – the system must allocate the

memory to several jobs.
� CPU scheduling – the system must choose among

several jobs ready to run.
� Allocation of devices.

Silberschatz, Galvin and Gagne 20021.10Operating System Concepts

Time-Sharing Systems–Interactive Computing

� The CPU is multiplexed among several jobs that are kept
in memory and on disk (the CPU is allocated to a job only
if the job is in memory).

� A job swapped in and out of memory to the disk.
� On-line communication between the user and the system

is provided; when the operating system finishes the
execution of one command, it seeks the next “control
statement” from the user’s keyboard.

� On-line system must be available for users to access data
and code.

Silberschatz, Galvin and Gagne 20021.11Operating System Concepts

Desktop Systems

� Personal computers – computer system dedicated to a
single user.

� I/O devices – keyboards, mice, display screens, small
printers.

� User convenience and responsiveness.
� Can adopt technology developed for larger operating

system’ often individuals have sole use of computer and
do not need advanced CPU utilization of protection
features.

� May run several different types of operating systems
(Windows, MacOS, UNIX, Linux)

Silberschatz, Galvin and Gagne 20021.12Operating System Concepts

Parallel Systems

� Multiprocessor systems with more than on CPU in close
communication.

� Tightly coupled system – processors share memory and a
clock; communication usually takes place through the
shared memory.

� Advantages of parallel system:
✦ Increased throughput

✦ Economical
✦ Increased reliability

✔ graceful degradation

✔ fail-soft systems

Silberschatz, Galvin and Gagne 20021.13Operating System Concepts

Parallel Systems (Cont.)

� Symmetric multiprocessing (SMP)
✦ Each processor runs and identical copy of the operating

system.

✦ Many processes can run at once without performance
deterioration.

✦ Most modern operating systems support SMP

� Asymmetric multiprocessing
✦ Each processor is assigned a specific task; master

processor schedules and allocated work to slave
processors.

✦ More common in extremely large systems

Silberschatz, Galvin and Gagne 20021.14Operating System Concepts

Symmetric Multiprocessing Architecture

Silberschatz, Galvin and Gagne 20021.15Operating System Concepts

Distributed Systems

� Distribute the computation among several physical
processors.

� Loosely coupled system – each processor has its own
local memory; processors communicate with one another
through various communications lines, such as high-
speed buses or telephone lines.

� Advantages of distributed systems.
✦ Resources Sharing

✦ Computation speed up – load sharing

✦ Reliability
✦ Communications

Silberschatz, Galvin and Gagne 20021.16Operating System Concepts

Distributed Systems (cont)

� Requires networking infrastructure.
� Local area networks (LAN) or Wide area networks (WAN)
� May be either client-server or peer-to-peer systems.

Silberschatz, Galvin and Gagne 20021.17Operating System Concepts

General Structure of Client-Server

Silberschatz, Galvin and Gagne 20021.18Operating System Concepts

Clustered Systems

� Clustering allows two or more systems to share storage.
� Provides high reliability.
� Asymmetric clustering: one server runs the application

while other servers standby.
� Symmetric clustering: all N hosts are running the

application.

Silberschatz, Galvin and Gagne 20021.19Operating System Concepts

Real-Time Systems

� Often used as a control device in a dedicated application
such as controlling scientific experiments, medical
imaging systems, industrial control systems, and some
display systems.

� Well-defined fixed-time constraints.
� Real-Time systems may be either hard or soft real-time.

Silberschatz, Galvin and Gagne 20021.20Operating System Concepts

Real-Time Systems (Cont.)

� Hard real-time:
✦ Secondary storage limited or absent, data stored in short

term memory, or read-only memory (ROM)
✦ Conflicts with time-sharing systems, not supported by

general-purpose operating systems.

� Soft real-time
✦ Limited utility in industrial control of robotics

✦ Useful in applications (multimedia, virtual reality) requiring
advanced operating-system features.

Silberschatz, Galvin and Gagne 20021.21Operating System Concepts

Handheld Systems

� Personal Digital Assistants (PDAs)
� Cellular telephones
� Issues:

✦ Limited memory

✦ Slow processors
✦ Small display screens.

Silberschatz, Galvin and Gagne 20021.22Operating System Concepts

Migration of Operating-System Concepts and Features

Silberschatz, Galvin and Gagne 20021.23Operating System Concepts

Computing Environments

� Traditional computing
� Web-Based Computing
� Embedded Computing

Silberschatz, Galvin and Gagne 20022.1Operating System Concepts

Chapter 2: Computer-System Structures

� Computer System Operation
� I/O Structure
� Storage Structure
� Storage Hierarchy
� Hardware Protection
� General System Architecture

Silberschatz, Galvin and Gagne 20022.2Operating System Concepts

Computer-System Architecture

Silberschatz, Galvin and Gagne 20022.3Operating System Concepts

Computer-System Operation

� I/O devices and the CPU can execute concurrently.
� Each device controller is in charge of a particular device

type.
� Each device controller has a local buffer.
� CPU moves data from/to main memory to/from local

buffers
� I/O is from the device to local buffer of controller.
� Device controller informs CPU that it has finished its

operation by causing an interrupt.

Silberschatz, Galvin and Gagne 20022.4Operating System Concepts

Common Functions of Interrupts

� Interrupt transfers control to the interrupt service routine
generally, through the interrupt vector, which contains the
addresses of all the service routines.

� Interrupt architecture must save the address of the
interrupted instruction.

� Incoming interrupts are disabled while another interrupt is
being processed to prevent a lost interrupt.

� A trap is a software-generated interrupt caused either by
an error or a user request.

� An operating system is interrupt driven.

Silberschatz, Galvin and Gagne 20022.5Operating System Concepts

Interrupt Handling

� The operating system preserves the state of the CPU by
storing registers and the program counter.

� Determines which type of interrupt has occurred:
✦ polling

✦ vectored interrupt system

� Separate segments of code determine what action should
be taken for each type of interrupt

Silberschatz, Galvin and Gagne 20022.6Operating System Concepts

Interrupt Time Line For a Single Process Doing Output

Silberschatz, Galvin and Gagne 20022.7Operating System Concepts

I/O Structure

� After I/O starts, control returns to user program only upon
I/O completion.

✦ Wait instruction idles the CPU until the next interrupt
✦ Wait loop (contention for memory access).
✦ At most one I/O request is outstanding at a time, no

simultaneous I/O processing.

� After I/O starts, control returns to user program without
waiting for I/O completion.

✦ System call – request to the operating system to allow user
to wait for I/O completion.

✦ Device-status table contains entry for each I/O device
indicating its type, address, and state.

✦ Operating system indexes into I/O device table to determine
device status and to modify table entry to include interrupt.

Silberschatz, Galvin and Gagne 20022.8Operating System Concepts

Two I/O Methods

Synchronous Asynchronous

Silberschatz, Galvin and Gagne 20022.9Operating System Concepts

Device-Status Table

Silberschatz, Galvin and Gagne 20022.10Operating System Concepts

Direct Memory Access Structure

� Used for high-speed I/O devices able to transmit
information at close to memory speeds.

� Device controller transfers blocks of data from buffer
storage directly to main memory without CPU
intervention.

� Only on interrupt is generated per block, rather than the
one interrupt per byte.

Silberschatz, Galvin and Gagne 20022.11Operating System Concepts

Storage Structure

� Main memory – only large storage media that the CPU
can access directly.

� Secondary storage – extension of main memory that
provides large nonvolatile storage capacity.

� Magnetic disks – rigid metal or glass platters covered with
magnetic recording material

✦ Disk surface is logically divided into tracks, which are
subdivided into sectors.

✦ The disk controller determines the logical interaction
between the device and the computer.

Silberschatz, Galvin and Gagne 20022.12Operating System Concepts

Moving-Head Disk Mechanism

Silberschatz, Galvin and Gagne 20022.13Operating System Concepts

Storage Hierarchy

� Storage systems organized in hierarchy.
✦ Speed
✦ Cost

✦ Volatility

� Caching – copying information into faster storage system;
main memory can be viewed as a last cache for
secondary storage.

Silberschatz, Galvin and Gagne 20022.14Operating System Concepts

Storage-Device Hierarchy

Silberschatz, Galvin and Gagne 20022.15Operating System Concepts

Caching

� Use of high-speed memory to hold recently-accessed
data.

� Requires a cache management policy.
� Caching introduces another level in storage hierarchy.

This requires data that is simultaneously stored in more
than one level to be consistent.

Silberschatz, Galvin and Gagne 20022.16Operating System Concepts

Migration of A From Disk to Register

Silberschatz, Galvin and Gagne 20022.17Operating System Concepts

Hardware Protection

� Dual-Mode Operation
� I/O Protection
� Memory Protection
� CPU Protection

Silberschatz, Galvin and Gagne 20022.18Operating System Concepts

Dual-Mode Operation

� Sharing system resources requires operating system to
ensure that an incorrect program cannot cause other
programs to execute incorrectly.

� Provide hardware support to differentiate between at least
two modes of operations.
1. User mode – execution done on behalf of a user.

2. Monitor mode (also kernel mode or system mode) –
execution done on behalf of operating system.

Silberschatz, Galvin and Gagne 20022.19Operating System Concepts

Dual-Mode Operation (Cont.)

� Mode bit added to computer hardware to indicate the
current mode: monitor (0) or user (1).

� When an interrupt or fault occurs hardware switches to
monitor mode.

Privileged instructions can be issued only in monitor mode.

monitor user

Interrupt/fault

set user mode

Silberschatz, Galvin and Gagne 20022.20Operating System Concepts

I/O Protection

� All I/O instructions are privileged instructions.
� Must ensure that a user program could never gain control

of the computer in monitor mode (I.e., a user program
that, as part of its execution, stores a new address in the
interrupt vector).

Silberschatz, Galvin and Gagne 20022.21Operating System Concepts

Use of A System Call to Perform I/O

Silberschatz, Galvin and Gagne 20022.22Operating System Concepts

Memory Protection

� Must provide memory protection at least for the interrupt
vector and the interrupt service routines.

� In order to have memory protection, add two registers
that determine the range of legal addresses a program
may access:

✦ Base register – holds the smallest legal physical memory
address.

✦ Limit register – contains the size of the range

� Memory outside the defined range is protected.

Silberschatz, Galvin and Gagne 20022.23Operating System Concepts

Use of A Base and Limit Register

Silberschatz, Galvin and Gagne 20022.24Operating System Concepts

Hardware Address Protection

Silberschatz, Galvin and Gagne 20022.25Operating System Concepts

Hardware Protection

� When executing in monitor mode, the operating system
has unrestricted access to both monitor and user’s
memory.

� The load instructions for the base and limit registers are
privileged instructions.

Silberschatz, Galvin and Gagne 20022.26Operating System Concepts

CPU Protection

� Timer – interrupts computer after specified period to
ensure operating system maintains control.

✦ Timer is decremented every clock tick.
✦ When timer reaches the value 0, an interrupt occurs.

� Timer commonly used to implement time sharing.
� Time also used to compute the current time.
� Load-timer is a privileged instruction.

Silberschatz, Galvin and Gagne 20022.27Operating System Concepts

Network Structure

� Local Area Networks (LAN)
� Wide Area Networks (WAN)

Silberschatz, Galvin and Gagne 20022.28Operating System Concepts

Local Area Network Structure

Silberschatz, Galvin and Gagne 20022.29Operating System Concepts

Wide Area Network Structure

Silberschatz, Galvin and Gagne 20023.1Operating System Concepts

Chapter 3: Operating-System Structures

� System Components
� Operating System Services
� System Calls
� System Programs
� System Structure
� Virtual Machines
� System Design and Implementation
� System Generation

Silberschatz, Galvin and Gagne 20023.2Operating System Concepts

Common System Components

� Process Management
� Main Memory Management
� File Management
� I/O System Management
� Secondary Management
� Networking
� Protection System
� Command-Interpreter System

Silberschatz, Galvin and Gagne 20023.3Operating System Concepts

Process Management

� A process is a program in execution. A process needs
certain resources, including CPU time, memory, files, and
I/O devices, to accomplish its task.

� The operating system is responsible for the following
activities in connection with process management.

✦ Process creation and deletion.

✦ process suspension and resumption.
✦ Provision of mechanisms for:

✔ process synchronization

✔ process communication

Silberschatz, Galvin and Gagne 20023.4Operating System Concepts

Main-Memory Management

� Memory is a large array of words or bytes, each with its
own address. It is a repository of quickly accessible data
shared by the CPU and I/O devices.

� Main memory is a volatile storage device. It loses its
contents in the case of system failure.

� The operating system is responsible for the following
activities in connections with memory management:

✦ Keep track of which parts of memory are currently being
used and by whom.

✦ Decide which processes to load when memory space
becomes available.

✦ Allocate and deallocate memory space as needed.

Silberschatz, Galvin and Gagne 20023.5Operating System Concepts

File Management

� A file is a collection of related information defined by its
creator. Commonly, files represent programs (both
source and object forms) and data.

� The operating system is responsible for the following
activities in connections with file management:

✦ File creation and deletion.

✦ Directory creation and deletion.

✦ Support of primitives for manipulating files and directories.
✦ Mapping files onto secondary storage.

✦ File backup on stable (nonvolatile) storage media.

Silberschatz, Galvin and Gagne 20023.6Operating System Concepts

I/O System Management

� The I/O system consists of:
✦ A buffer-caching system
✦ A general device-driver interface

✦ Drivers for specific hardware devices

Silberschatz, Galvin and Gagne 20023.7Operating System Concepts

Secondary-Storage Management

� Since main memory (primary storage) is volatile and too
small to accommodate all data and programs
permanently, the computer system must provide
secondary storage to back up main memory.

� Most modern computer systems use disks as the
principle on-line storage medium, for both programs and
data.

� The operating system is responsible for the following
activities in connection with disk management:
✦ Free space management
✦ Storage allocation

✦ Disk scheduling

Silberschatz, Galvin and Gagne 20023.8Operating System Concepts

Networking (Distributed Systems)

� A distributed system is a collection processors that do not
share memory or a clock. Each processor has its own
local memory.

� The processors in the system are connected through a
communication network.

� Communication takes place using a protocol.
� A distributed system provides user access to various

system resources.
� Access to a shared resource allows:

✦ Computation speed-up

✦ Increased data availability
✦ Enhanced reliability

Silberschatz, Galvin and Gagne 20023.9Operating System Concepts

Protection System

� Protection refers to a mechanism for controlling access
by programs, processes, or users to both system and
user resources.

� The protection mechanism must:
✦ distinguish between authorized and unauthorized usage.

✦ specify the controls to be imposed.

✦ provide a means of enforcement.

Silberschatz, Galvin and Gagne 20023.10Operating System Concepts

Command-Interpreter System

� Many commands are given to the operating system by
control statements which deal with:

✦ process creation and management
✦ I/O handling

✦ secondary-storage management

✦ main-memory management
✦ file-system access

✦ protection

✦ networking

Silberschatz, Galvin and Gagne 20023.11Operating System Concepts

Command-Interpreter System (Cont.)

� The program that reads and interprets control statements
is called variously:

✦ command-line interpreter

✦ shell (in UNIX)

 Its function is to get and execute the next command
statement.

Silberschatz, Galvin and Gagne 20023.12Operating System Concepts

Operating System Services

� Program execution – system capability to load a program into
memory and to run it.

� I/O operations – since user programs cannot execute I/O
operations directly, the operating system must provide some
means to perform I/O.

� File-system manipulation – program capability to read, write,
create, and delete files.

� Communications – exchange of information between processes
executing either on the same computer or on different systems
tied together by a network. Implemented via shared memory or
message passing.

� Error detection – ensure correct computing by detecting errors
in the CPU and memory hardware, in I/O devices, or in user
programs.

Silberschatz, Galvin and Gagne 20023.13Operating System Concepts

Additional Operating System Functions

Additional functions exist not for helping the user, but rather
for ensuring efficient system operations.

• Resource allocation – allocating resources to multiple users
or multiple jobs running at the same time.

• Accounting – keep track of and record which users use how
much and what kinds of computer resources for account
billing or for accumulating usage statistics.

• Protection – ensuring that all access to system resources is
controlled.

Silberschatz, Galvin and Gagne 20023.14Operating System Concepts

System Calls

� System calls provide the interface between a running
program and the operating system.

✦ Generally available as assembly-language instructions.
✦ Languages defined to replace assembly language for

systems programming allow system calls to be made
directly (e.g., C, C++)

� Three general methods are used to pass parameters
between a running program and the operating system.

✦ Pass parameters in registers.
✦ Store the parameters in a table in memory, and the table

address is passed as a parameter in a register.
✦ Push (store) the parameters onto the stack by the program,

and pop off the stack by operating system.

Silberschatz, Galvin and Gagne 20023.15Operating System Concepts

Passing of Parameters As A Table

Silberschatz, Galvin and Gagne 20023.16Operating System Concepts

Types of System Calls

� Process control
� File management
� Device management
� Information maintenance
� Communications

Silberschatz, Galvin and Gagne 20023.17Operating System Concepts

MS-DOS Execution

At System Start-up Running a Program

Silberschatz, Galvin and Gagne 20023.18Operating System Concepts

UNIX Running Multiple Programs

Silberschatz, Galvin and Gagne 20023.19Operating System Concepts

Communication Models

Msg Passing Shared Memory

� Communication may take place using either message
passing or shared memory.

Silberschatz, Galvin and Gagne 20023.20Operating System Concepts

System Programs

� System programs provide a convenient environment for
program development and execution. The can be divided
into:

✦ File manipulation
✦ Status information

✦ File modification

✦ Programming language support
✦ Program loading and execution

✦ Communications

✦ Application programs

� Most users’ view of the operation system is defined by
system programs, not the actual system calls.

Silberschatz, Galvin and Gagne 20023.21Operating System Concepts

MS-DOS System Structure

� MS-DOS – written to provide the most functionality in the
least space

✦ not divided into modules
✦ Although MS-DOS has some structure, its interfaces and

levels of functionality are not well separated

Silberschatz, Galvin and Gagne 20023.22Operating System Concepts

MS-DOS Layer Structure

Silberschatz, Galvin and Gagne 20023.23Operating System Concepts

UNIX System Structure

� UNIX – limited by hardware functionality, the original
UNIX operating system had limited structuring. The UNIX
OS consists of two separable parts.

✦ Systems programs
✦ The kernel

✔ Consists of everything below the system-call interface
and above the physical hardware

✔ Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level.

Silberschatz, Galvin and Gagne 20023.24Operating System Concepts

UNIX System Structure

Silberschatz, Galvin and Gagne 20023.25Operating System Concepts

Layered Approach

� The operating system is divided into a number of layers
(levels), each built on top of lower layers. The bottom
layer (layer 0), is the hardware; the highest (layer N) is
the user interface.

� With modularity, layers are selected such that each uses
functions (operations) and services of only lower-level
layers.

Silberschatz, Galvin and Gagne 20023.26Operating System Concepts

An Operating System Layer

Silberschatz, Galvin and Gagne 20023.27Operating System Concepts

OS/2 Layer Structure

Silberschatz, Galvin and Gagne 20023.28Operating System Concepts

Microkernel System Structure

� Moves as much from the kernel into “user” space.
� Communication takes place between user modules using

message passing.
� Benefits:

- easier to extend a microkernel
- easier to port the operating system to new architectures
- more reliable (less code is running in kernel mode)
- more secure

Silberschatz, Galvin and Gagne 20023.29Operating System Concepts

Windows NT Client-Server Structure

Silberschatz, Galvin and Gagne 20023.30Operating System Concepts

Virtual Machines

� A virtual machine takes the layered approach to its logical
conclusion. It treats hardware and the operating system
kernel as though they were all hardware.

� A virtual machine provides an interface identical to the
underlying bare hardware.

� The operating system creates the illusion of multiple
processes, each executing on its own processor with its
own (virtual) memory.

Silberschatz, Galvin and Gagne 20023.31Operating System Concepts

Virtual Machines (Cont.)

� The resources of the physical computer are shared to
create the virtual machines.

✦ CPU scheduling can create the appearance that users have
their own processor.

✦ Spooling and a file system can provide virtual card readers
and virtual line printers.

✦ A normal user time-sharing terminal serves as the virtual
machine operator’s console.

Silberschatz, Galvin and Gagne 20023.32Operating System Concepts

System Models

Non-virtual Machine Virtual Machine

Silberschatz, Galvin and Gagne 20023.33Operating System Concepts

Advantages/Disadvantages of Virtual Machines

� The virtual-machine concept provides complete
protection of system resources since each virtual
machine is isolated from all other virtual machines. This
isolation, however, permits no direct sharing of resources.

� A virtual-machine system is a perfect vehicle for
operating-systems research and development. System
development is done on the virtual machine, instead of on
a physical machine and so does not disrupt normal
system operation.

� The virtual machine concept is difficult to implement due
to the effort required to provide an exact duplicate to the
underlying machine.

Silberschatz, Galvin and Gagne 20023.34Operating System Concepts

Java Virtual Machine

� Compiled Java programs are platform-neutral bytecodes
executed by a Java Virtual Machine (JVM).

� JVM consists of
- class loader
- class verifier
- runtime interpreter

� Just-In-Time (JIT) compilers increase performance

Silberschatz, Galvin and Gagne 20023.35Operating System Concepts

Java Virtual Machine

Silberschatz, Galvin and Gagne 20023.36Operating System Concepts

System Design Goals

� User goals – operating system should be convenient to
use, easy to learn, reliable, safe, and fast.

� System goals – operating system should be easy to
design, implement, and maintain, as well as flexible,
reliable, error-free, and efficient.

Silberschatz, Galvin and Gagne 20023.37Operating System Concepts

Mechanisms and Policies

� Mechanisms determine how to do something, policies
decide what will be done.

� The separation of policy from mechanism is a very
important principle, it allows maximum flexibility if policy
decisions are to be changed later.

Silberschatz, Galvin and Gagne 20023.38Operating System Concepts

System Implementation

� Traditionally written in assembly language, operating
systems can now be written in higher-level languages.

� Code written in a high-level language:
✦ can be written faster.

✦ is more compact.

✦ is easier to understand and debug.

� An operating system is far easier to port (move to some
other hardware) if it is written in a high-level language.

Silberschatz, Galvin and Gagne 20023.39Operating System Concepts

System Generation (SYSGEN)

� Operating systems are designed to run on any of a class
of machines; the system must be configured for each
specific computer site.

� SYSGEN program obtains information concerning the
specific configuration of the hardware system.

� Booting – starting a computer by loading the kernel.
� Bootstrap program – code stored in ROM that is able to

locate the kernel, load it into memory, and start its
execution.

Silberschatz, Galvin and Gagne 20024.1Operating System Concepts

Chapter 4: Processes

� Process Concept
� Process Scheduling
� Operations on Processes
� Cooperating Processes
� Interprocess Communication
� Communication in Client-Server Systems

Silberschatz, Galvin and Gagne 20024.2Operating System Concepts

Process Concept

� An operating system executes a variety of programs:
✦ Batch system – jobs

✦ Time-shared systems – user programs or tasks

� Textbook uses the terms job and process almost
interchangeably.

� Process – a program in execution; process execution
must progress in sequential fashion.

� A process includes:
✦ program counter

✦ stack
✦ data section

Silberschatz, Galvin and Gagne 20024.3Operating System Concepts

Process State

� As a process executes, it changes state
✦ new: The process is being created.
✦ running: Instructions are being executed.

✦ waiting: The process is waiting for some event to occur.

✦ ready: The process is waiting to be assigned to a process.
✦ terminated: The process has finished execution.

Silberschatz, Galvin and Gagne 20024.4Operating System Concepts

Diagram of Process State

Silberschatz, Galvin and Gagne 20024.5Operating System Concepts

Process Control Block (PCB)

Information associated with each process.
� Process state
� Program counter
� CPU registers
� CPU scheduling information
� Memory-management information
� Accounting information
� I/O status information

Silberschatz, Galvin and Gagne 20024.6Operating System Concepts

Process Control Block (PCB)

Silberschatz, Galvin and Gagne 20024.7Operating System Concepts

CPU Switch From Process to Process

Silberschatz, Galvin and Gagne 20024.8Operating System Concepts

Process Scheduling Queues

� Job queue – set of all processes in the system.
� Ready queue – set of all processes residing in main

memory, ready and waiting to execute.
� Device queues – set of processes waiting for an I/O

device.
� Process migration between the various queues.

Silberschatz, Galvin and Gagne 20024.9Operating System Concepts

Ready Queue And Various I/O Device Queues

Silberschatz, Galvin and Gagne 20024.10Operating System Concepts

Representation of Process Scheduling

Silberschatz, Galvin and Gagne 20024.11Operating System Concepts

Schedulers

� Long-term scheduler (or job scheduler) – selects which
processes should be brought into the ready queue.

� Short-term scheduler (or CPU scheduler) – selects which
process should be executed next and allocates CPU.

Silberschatz, Galvin and Gagne 20024.12Operating System Concepts

Addition of Medium Term Scheduling

Silberschatz, Galvin and Gagne 20024.13Operating System Concepts

Schedulers (Cont.)

� Short-term scheduler is invoked very frequently
(milliseconds) � (must be fast).

� Long-term scheduler is invoked very infrequently
(seconds, minutes) � (may be slow).

� The long-term scheduler controls the degree of
multiprogramming.

� Processes can be described as either:
✦ I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts.

✦ CPU-bound process – spends more time doing
computations; few very long CPU bursts.

Silberschatz, Galvin and Gagne 20024.14Operating System Concepts

Context Switch

� When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process.

� Context-switch time is overhead; the system does no
useful work while switching.

� Time dependent on hardware support.

Silberschatz, Galvin and Gagne 20024.15Operating System Concepts

Process Creation

� Parent process create children processes, which, in turn
create other processes, forming a tree of processes.

� Resource sharing
✦ Parent and children share all resources.

✦ Children share subset of parent’s resources.
✦ Parent and child share no resources.

� Execution
✦ Parent and children execute concurrently.
✦ Parent waits until children terminate.

Silberschatz, Galvin and Gagne 20024.16Operating System Concepts

Process Creation (Cont.)

� Address space
✦ Child duplicate of parent.

✦ Child has a program loaded into it.

� UNIX examples
✦ fork system call creates new process

✦ exec system call used after a fork to replace the process’
memory space with a new program.

Silberschatz, Galvin and Gagne 20024.17Operating System Concepts

Processes Tree on a UNIX System

Silberschatz, Galvin and Gagne 20024.18Operating System Concepts

Process Termination

� Process executes last statement and asks the operating
system to decide it (exit).

✦ Output data from child to parent (via wait).
✦ Process’ resources are deallocated by operating system.

� Parent may terminate execution of children processes
(abort).

✦ Child has exceeded allocated resources.

✦ Task assigned to child is no longer required.

✦ Parent is exiting.
✔ Operating system does not allow child to continue if its

parent terminates.
✔ Cascading termination.

Silberschatz, Galvin and Gagne 20024.19Operating System Concepts

Cooperating Processes

� Independent process cannot affect or be affected by the
execution of another process.

� Cooperating process can affect or be affected by the
execution of another process

� Advantages of process cooperation
✦ Information sharing
✦ Computation speed-up

✦ Modularity

✦ Convenience

Silberschatz, Galvin and Gagne 20024.20Operating System Concepts

Producer-Consumer Problem

� Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process.

✦ unbounded-buffer places no practical limit on the size of the
buffer.

✦ bounded-buffer assumes that there is a fixed buffer size.

Silberschatz, Galvin and Gagne 20024.21Operating System Concepts

Bounded-Buffer – Shared-Memory Solution

� Shared data
#define BUFFER_SIZE 10
Typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

� Solution is correct, but can only use BUFFER_SIZE-1
elements

Silberschatz, Galvin and Gagne 20024.22Operating System Concepts

Bounded-Buffer – Producer Process

item nextProduced;

while (1) {
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

}

Silberschatz, Galvin and Gagne 20024.23Operating System Concepts

Bounded-Buffer – Consumer Process

item nextConsumed;

while (1) {
while (in == out)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

}

Silberschatz, Galvin and Gagne 20024.24Operating System Concepts

Interprocess Communication (IPC)

� Mechanism for processes to communicate and to
synchronize their actions.

� Message system – processes communicate with each
other without resorting to shared variables.

� IPC facility provides two operations:
✦ send(message) – message size fixed or variable
✦ receive(message)

� If P and Q wish to communicate, they need to:
✦ establish a communication link between them

✦ exchange messages via send/receive

� Implementation of communication link
✦ physical (e.g., shared memory, hardware bus)

✦ logical (e.g., logical properties)

Silberschatz, Galvin and Gagne 20024.25Operating System Concepts

Implementation Questions

� How are links established?
� Can a link be associated with more than two processes?
� How many links can there be between every pair of

communicating processes?
� What is the capacity of a link?
� Is the size of a message that the link can accommodate

fixed or variable?
� Is a link unidirectional or bi-directional?

Silberschatz, Galvin and Gagne 20024.26Operating System Concepts

Direct Communication

� Processes must name each other explicitly:
✦ send (P, message) – send a message to process P

✦ receive(Q, message) – receive a message from process Q

� Properties of communication link
✦ Links are established automatically.

✦ A link is associated with exactly one pair of communicating
processes.

✦ Between each pair there exists exactly one link.

✦ The link may be unidirectional, but is usually bi-directional.

Silberschatz, Galvin and Gagne 20024.27Operating System Concepts

Indirect Communication

� Messages are directed and received from mailboxes (also
referred to as ports).

✦ Each mailbox has a unique id.

✦ Processes can communicate only if they share a mailbox.

� Properties of communication link
✦ Link established only if processes share a common mailbox

✦ A link may be associated with many processes.

✦ Each pair of processes may share several communication
links.

✦ Link may be unidirectional or bi-directional.

Silberschatz, Galvin and Gagne 20024.28Operating System Concepts

Indirect Communication

� Operations
✦ create a new mailbox

✦ send and receive messages through mailbox

✦ destroy a mailbox

� Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

Silberschatz, Galvin and Gagne 20024.29Operating System Concepts

Indirect Communication

� Mailbox sharing
✦ P1, P2, and P3 share mailbox A.

✦ P1, sends; P2 and P3 receive.

✦ Who gets the message?

� Solutions
✦ Allow a link to be associated with at most two processes.

✦ Allow only one process at a time to execute a receive
operation.

✦ Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

Silberschatz, Galvin and Gagne 20024.30Operating System Concepts

Synchronization

� Message passing may be either blocking or non-blocking.
� Blocking is considered synchronous
� Non-blocking is considered asynchronous
� send and receive primitives may be either blocking or

non-blocking.

Silberschatz, Galvin and Gagne 20024.31Operating System Concepts

Buffering

� Queue of messages attached to the link; implemented in
one of three ways.
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).
2. Bounded capacity – finite length of n messages

Sender must wait if link full.

3. Unbounded capacity – infinite length
Sender never waits.

Silberschatz, Galvin and Gagne 20024.32Operating System Concepts

Client-Server Communication

� Sockets
� Remote Procedure Calls
� Remote Method Invocation (Java)

Silberschatz, Galvin and Gagne 20024.33Operating System Concepts

Sockets

� A socket is defined as an endpoint for communication.
� Concatenation of IP address and port
� The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8
� Communication consists between a pair of sockets.

Silberschatz, Galvin and Gagne 20024.34Operating System Concepts

Socket Communication

Silberschatz, Galvin and Gagne 20024.35Operating System Concepts

Remote Procedure Calls

� Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems.

� Stubs – client-side proxy for the actual procedure on the
server.

� The client-side stub locates the server and marshalls the
parameters.

� The server-side stub receives this message, unpacks the
marshalled parameters, and peforms the procedure on
the server.

Silberschatz, Galvin and Gagne 20024.36Operating System Concepts

Execution of RPC

Silberschatz, Galvin and Gagne 20024.37Operating System Concepts

Remote Method Invocation

� Remote Method Invocation (RMI) is a Java mechanism
similar to RPCs.

� RMI allows a Java program on one machine to invoke a
method on a remote object.

Silberschatz, Galvin and Gagne 20024.38Operating System Concepts

Marshalling Parameters

Silberschatz, Galvin and Gagne 20025.1Operating System Concepts

Chapter 5: Threads

n Overview

n Multithreading Models

n Threading Issues
n Pthreads

n Solaris 2 Threads

n Windows 2000 Threads

n Linux Threads
n Java Threads

Silberschatz, Galvin and Gagne 20025.2Operating System Concepts

Single and Multithreaded Processes

Silberschatz, Galvin and Gagne 20025.3Operating System Concepts

Benefits

n Responsiveness

n Resource Sharing

n Economy

n Utilization of MP Architectures

Silberschatz, Galvin and Gagne 20025.4Operating System Concepts

User Threads

n Thread management done by user-level threads library

n Examples
- POSIX Pthreads

- Mach C-threads

- Solaris threads

Silberschatz, Galvin and Gagne 20025.5Operating System Concepts

Kernel Threads

n Supported by the Kernel

n Examples
- Windows 95/98/NT/2000

 - Solaris

- Tru64 UNIX

- BeOS

- Linux

Silberschatz, Galvin and Gagne 20025.6Operating System Concepts

Multithreading Models

n Many-to-One

n One-to-One

n Many-to-Many

Silberschatz, Galvin and Gagne 20025.7Operating System Concepts

Many-to-One

n Many user-level threads mapped to single kernel thread.

n Used on systems that do not support kernel threads.

Silberschatz, Galvin and Gagne 20025.8Operating System Concepts

Many-to-One Model

Silberschatz, Galvin and Gagne 20025.9Operating System Concepts

One-to-One

n Each user-level thread maps to kernel thread.

n Examples
- Windows 95/98/NT/2000

- OS/2

Silberschatz, Galvin and Gagne 20025.10Operating System Concepts

One-to-one Model

Silberschatz, Galvin and Gagne 20025.11Operating System Concepts

Many-to-Many Model

n Allows many user level threads to be mapped to many
kernel threads.

n Allows the operating system to create a sufficient number
of kernel threads.

n Solaris 2

n Windows NT/2000 with the ThreadFiber package

Silberschatz, Galvin and Gagne 20025.12Operating System Concepts

Many-to-Many Model

Silberschatz, Galvin and Gagne 20025.13Operating System Concepts

Threading Issues

n Semantics of fork() and exec() system calls.

n Thread cancellation.

n Signal handling
n Thread pools

n Thread specific data

Silberschatz, Galvin and Gagne 20025.14Operating System Concepts

Pthreads

n a POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization.

n API specifies behavior of the thread library,
implementation is up to development of the library.

n Common in UNIX operating systems.

Silberschatz, Galvin and Gagne 20025.15Operating System Concepts

Solaris 2 Threads

Silberschatz, Galvin and Gagne 20025.16Operating System Concepts

Solaris Process

Silberschatz, Galvin and Gagne 20025.17Operating System Concepts

Windows 2000 Threads

n Implements the one-to-one mapping.

n Each thread contains

- a thread id
- register set

- separate user and kernel stacks

- private data storage area

Silberschatz, Galvin and Gagne 20025.18Operating System Concepts

Linux Threads

n Linux refers to them as tasks rather than threads.

n Thread creation is done through clone() system call.

n Clone() allows a child task to share the address space of
the parent task (process)

Silberschatz, Galvin and Gagne 20025.19Operating System Concepts

Java Threads

n Java threads may be created by:

F Extending Thread class
F Implementing the Runnable interface

n Java threads are managed by the JVM.

Silberschatz, Galvin and Gagne 20025.20Operating System Concepts

Java Thread States

Silberschatz, Galvin and Gagne 20026.1Operating System Concepts

Chapter 6: CPU Scheduling

� Basic Concepts
� Scheduling Criteria
� Scheduling Algorithms
� Multiple-Processor Scheduling
� Real-Time Scheduling
� Algorithm Evaluation

Silberschatz, Galvin and Gagne 20026.2Operating System Concepts

Basic Concepts

� Maximum CPU utilization obtained with
multiprogramming

� CPU–I/O Burst Cycle – Process execution consists of a
cycle of CPU execution and I/O wait.

� CPU burst distribution

Silberschatz, Galvin and Gagne 20026.3Operating System Concepts

Alternating Sequence of CPU And I/O Bursts

Silberschatz, Galvin and Gagne 20026.4Operating System Concepts

Histogram of CPU-burst Times

Silberschatz, Galvin and Gagne 20026.5Operating System Concepts

CPU Scheduler

� Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.

� CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state.

2. Switches from running to ready state.
3. Switches from waiting to ready.

4. Terminates.

� Scheduling under 1 and 4 is nonpreemptive.
� All other scheduling is preemptive.

Silberschatz, Galvin and Gagne 20026.6Operating System Concepts

Dispatcher

� Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

✦ switching context

✦ switching to user mode

✦ jumping to the proper location in the user program to restart
that program

� Dispatch latency – time it takes for the dispatcher to stop
one process and start another running.

Silberschatz, Galvin and Gagne 20026.7Operating System Concepts

Scheduling Criteria

� CPU utilization – keep the CPU as busy as possible
� Throughput – # of processes that complete their

execution per time unit
� Turnaround time – amount of time to execute a particular

process
� Waiting time – amount of time a process has been waiting

in the ready queue
� Response time – amount of time it takes from when a

request was submitted until the first response is
produced, not output (for time-sharing environment)

Silberschatz, Galvin and Gagne 20026.8Operating System Concepts

Optimization Criteria

� Max CPU utilization
� Max throughput
� Min turnaround time
� Min waiting time
� Min response time

Silberschatz, Galvin and Gagne 20026.9Operating System Concepts

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
 P2 3
 P3 3

� Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

� Waiting time for P1 = 0; P2 = 24; P3 = 27
� Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

Silberschatz, Galvin and Gagne 20026.10Operating System Concepts

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
 P2 , P3 , P1 .

� The Gantt chart for the schedule is:

� Waiting time for P1 = 6; P2 = 0; P3 = 3
� Average waiting time: (6 + 0 + 3)/3 = 3
� Much better than previous case.
� Convoy effect short process behind long process

P1P3P2

63 300

Silberschatz, Galvin and Gagne 20026.11Operating System Concepts

Shortest-Job-First (SJR) Scheduling

� Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

� Two schemes:
✦ nonpreemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst.

✦ preemptive – if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

� SJF is optimal – gives minimum average waiting time for
a given set of processes.

Silberschatz, Galvin and Gagne 20026.12Operating System Concepts

Process Arrival Time Burst Time
P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

� SJF (non-preemptive)

� Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

Silberschatz, Galvin and Gagne 20026.13Operating System Concepts

Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

� SJF (preemptive)

� Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Silberschatz, Galvin and Gagne 20026.14Operating System Concepts

Determining Length of Next CPU Burst

� Can only estimate the length.
� Can be done by using the length of previous CPU bursts,

using exponential averaging.

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of lenght actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .t nnn ταατ −+== 11

Silberschatz, Galvin and Gagne 20026.15Operating System Concepts

Prediction of the Length of the Next CPU Burst

Silberschatz, Galvin and Gagne 20026.16Operating System Concepts

Examples of Exponential Averaging

� α =0
✦ τn+1 = τn

✦ Recent history does not count.

� α =1
✦ τn+1 = tn
✦ Only the actual last CPU burst counts.

� If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

 +(1 - α)j α tn -1 + …

 +(1 - α)n=1 tn τ0

� Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor.

Silberschatz, Galvin and Gagne 20026.17Operating System Concepts

Priority Scheduling

� A priority number (integer) is associated with each
process

� The CPU is allocated to the process with the highest
priority (smallest integer ≡ highest priority).

✦ Preemptive

✦ nonpreemptive

� SJF is a priority scheduling where priority is the predicted
next CPU burst time.

� Problem ≡ Starvation – low priority processes may never
execute.

� Solution ≡ Aging – as time progresses increase the
priority of the process.

Silberschatz, Galvin and Gagne 20026.18Operating System Concepts

Round Robin (RR)

� Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

� If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

� Performance
✦ q large � FIFO
✦ q small � q must be large with respect to context switch,

otherwise overhead is too high.

Silberschatz, Galvin and Gagne 20026.19Operating System Concepts

Example of RR with Time Quantum = 20

Process Burst Time
P1 53
 P2 17
 P3 68
 P4 24

� The Gantt chart is:

� Typically, higher average turnaround than SJF, but better
response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Silberschatz, Galvin and Gagne 20026.20Operating System Concepts

Time Quantum and Context Switch Time

Silberschatz, Galvin and Gagne 20026.21Operating System Concepts

Turnaround Time Varies With The Time Quantum

Silberschatz, Galvin and Gagne 20026.22Operating System Concepts

Multilevel Queue

� Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

� Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

� Scheduling must be done between the queues.
✦ Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation.
✦ Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR

✦ 20% to background in FCFS

Silberschatz, Galvin and Gagne 20026.23Operating System Concepts

Multilevel Queue Scheduling

Silberschatz, Galvin and Gagne 20026.24Operating System Concepts

Multilevel Feedback Queue

� A process can move between the various queues; aging
can be implemented this way.

� Multilevel-feedback-queue scheduler defined by the
following parameters:

✦ number of queues

✦ scheduling algorithms for each queue
✦ method used to determine when to upgrade a process

✦ method used to determine when to demote a process

✦ method used to determine which queue a process will enter
when that process needs service

Silberschatz, Galvin and Gagne 20026.25Operating System Concepts

Example of Multilevel Feedback Queue

� Three queues:
✦ Q0 – time quantum 8 milliseconds

✦ Q1 – time quantum 16 milliseconds

✦ Q2 – FCFS

� Scheduling
✦ A new job enters queue Q0 which is served FCFS. When it

gains CPU, job receives 8 milliseconds. If it does not finish
in 8 milliseconds, job is moved to queue Q1.

✦ At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted
and moved to queue Q2.

Silberschatz, Galvin and Gagne 20026.26Operating System Concepts

Multilevel Feedback Queues

Silberschatz, Galvin and Gagne 20026.27Operating System Concepts

Multiple-Processor Scheduling

� CPU scheduling more complex when multiple CPUs are
available.

� Homogeneous processors within a multiprocessor.
� Load sharing
� Asymmetric multiprocessing – only one processor

accesses the system data structures, alleviating the need
for data sharing.

Silberschatz, Galvin and Gagne 20026.28Operating System Concepts

Real-Time Scheduling

� Hard real-time systems – required to complete a critical
task within a guaranteed amount of time.

� Soft real-time computing – requires that critical processes
receive priority over less fortunate ones.

Silberschatz, Galvin and Gagne 20026.29Operating System Concepts

Dispatch Latency

Silberschatz, Galvin and Gagne 20026.30Operating System Concepts

Algorithm Evaluation

� Deterministic modeling – takes a particular predetermined
workload and defines the performance of each algorithm
for that workload.

� Queueing models
� Implementation

Silberschatz, Galvin and Gagne 20026.31Operating System Concepts

Evaluation of CPU Schedulers by Simulation

Silberschatz, Galvin and Gagne 20026.32Operating System Concepts

Solaris 2 Scheduling

Silberschatz, Galvin and Gagne 20026.33Operating System Concepts

Windows 2000 Priorities

Silberschatz, Galvin and Gagne 20027.1Operating System Concepts

Chapter 7: Process Synchronization

� Background
� The Critical-Section Problem
� Synchronization Hardware
� Semaphores
� Classical Problems of Synchronization
� Critical Regions
� Monitors
� Synchronization in Solaris 2 & Windows 2000

Silberschatz, Galvin and Gagne 20027.2Operating System Concepts

Background

� Concurrent access to shared data may result in data
inconsistency.

� Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes.

� Shared-memory solution to bounded-butter problem
(Chapter 4) allows at most n – 1 items in buffer at the
same time. A solution, where all N buffers are used is not
simple.

✦ Suppose that we modify the producer-consumer code by
adding a variable counter, initialized to 0 and incremented
each time a new item is added to the buffer

Silberschatz, Galvin and Gagne 20027.3Operating System Concepts

Bounded-Buffer

� Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

Silberschatz, Galvin and Gagne 20027.4Operating System Concepts

Bounded-Buffer

� Producer process

item nextProduced;

while (1) {
while (counter == BUFFER_SIZE)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

Silberschatz, Galvin and Gagne 20027.5Operating System Concepts

Bounded-Buffer

� Consumer process

item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

Silberschatz, Galvin and Gagne 20027.6Operating System Concepts

Bounded Buffer

� The statements

counter++;
counter--;

must be performed atomically.

� Atomic operation means an operation that completes in
its entirety without interruption.

Silberschatz, Galvin and Gagne 20027.7Operating System Concepts

Bounded Buffer

� The statement “count++” may be implemented in
machine language as:

register1 = counter
register1 = register1 + 1
counter = register1

� The statement “count—” may be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2

Silberschatz, Galvin and Gagne 20027.8Operating System Concepts

Bounded Buffer

� If both the producer and consumer attempt to update the
buffer concurrently, the assembly language statements
may get interleaved.

� Interleaving depends upon how the producer and
consumer processes are scheduled.

Silberschatz, Galvin and Gagne 20027.9Operating System Concepts

Bounded Buffer

� Assume counter is initially 5. One interleaving of
statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

� The value of count may be either 4 or 6, where the
correct result should be 5.

Silberschatz, Galvin and Gagne 20027.10Operating System Concepts

Race Condition

� Race condition: The situation where several processes
access – and manipulate shared data concurrently. The
final value of the shared data depends upon which
process finishes last.

� To prevent race conditions, concurrent processes must
be synchronized.

Silberschatz, Galvin and Gagne 20027.11Operating System Concepts

The Critical-Section Problem

� n processes all competing to use some shared data
� Each process has a code segment, called critical section,

in which the shared data is accessed.
� Problem – ensure that when one process is executing in

its critical section, no other process is allowed to execute
in its critical section.

Silberschatz, Galvin and Gagne 20027.12Operating System Concepts

Solution to Critical-Section Problem

1. Mutual Exclusion. If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections.

2. Progress. If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then the selection of the processes that
will enter the critical section next cannot be postponed
indefinitely.

3. Bounded Waiting. A bound must exist on the number of
times that other processes are allowed to enter their
critical sections after a process has made a request to
enter its critical section and before that request is
granted.
� Assume that each process executes at a nonzero speed

� No assumption concerning relative speed of the n
processes.

Silberschatz, Galvin and Gagne 20027.13Operating System Concepts

Initial Attempts to Solve Problem

� Only 2 processes, P0 and P1

� General structure of process Pi (other process Pj)
do {

entry section
critical section

exit section
reminder section

} while (1);
� Processes may share some common variables to

synchronize their actions.

Silberschatz, Galvin and Gagne 20027.14Operating System Concepts

Algorithm 1

� Shared variables:
✦ int turn;

initially turn = 0
✦ turn - i � Pi can enter its critical section

� Process Pi

do {
while (turn != i) ;

critical section
turn = j;

reminder section
} while (1);

� Satisfies mutual exclusion, but not progress

Silberschatz, Galvin and Gagne 20027.15Operating System Concepts

Algorithm 2

� Shared variables
✦ boolean flag[2];

initially flag [0] = flag [1] = false.
✦ flag [i] = true � Pi ready to enter its critical section

� Process Pi

do {
flag[i] := true;
while (flag[j]) ;

critical section
flag [i] = false;

remainder section
} while (1);

� Satisfies mutual exclusion, but not progress requirement.

Silberschatz, Galvin and Gagne 20027.16Operating System Concepts

Algorithm 3

� Combined shared variables of algorithms 1 and 2.
� Process Pi

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn = j) ;

critical section
flag [i] = false;

remainder section
} while (1);

� Meets all three requirements; solves the critical-section
problem for two processes.

Silberschatz, Galvin and Gagne 20027.17Operating System Concepts

Bakery Algorithm

� Before entering its critical section, process receives a
number. Holder of the smallest number enters the critical
section.

� If processes Pi and Pj receive the same number, if i < j,
then Pi is served first; else Pj is served first.

� The numbering scheme always generates numbers in
increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...

Critical section for n processes

Silberschatz, Galvin and Gagne 20027.18Operating System Concepts

Bakery Algorithm

� Notation <≡ lexicographical order (ticket #, process id #)
✦ (a,b) < c,d) if a < c or if a = c and b < d

✦ max (a0,…, an-1) is a number, k, such that k ≥ ai for i - 0,
…, n – 1

� Shared data
boolean choosing[n];
int number[n];

 Data structures are initialized to false and 0 respectively

Silberschatz, Galvin and Gagne 20027.19Operating System Concepts

Bakery Algorithm

do {
choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false;
for (j = 0; j < n; j++) {

while (choosing[j]) ;
while ((number[j] != 0) && (number[j,j] < number[i,i])) ;

}
critical section

number[i] = 0;
remainder section

} while (1);

Silberschatz, Galvin and Gagne 20027.20Operating System Concepts

Synchronization Hardware

� Test and modify the content of a word atomically
.

boolean TestAndSet(boolean &target) {
boolean rv = target;
tqrget = true;

return rv;
}

Silberschatz, Galvin and Gagne 20027.21Operating System Concepts

Mutual Exclusion with Test-and-Set

� Shared data:
boolean lock = false;

� Process Pi

do {
while (TestAndSet(lock)) ;

critical section
lock = false;

remainder section
}

Silberschatz, Galvin and Gagne 20027.22Operating System Concepts

Synchronization Hardware

� Atomically swap two variables.

void Swap(boolean &a, boolean &b) {
boolean temp = a;
a = b;
b = temp;

}

Silberschatz, Galvin and Gagne 20027.23Operating System Concepts

Mutual Exclusion with Swap

� Shared data (initialized to false):
boolean lock;
boolean waiting[n];

� Process Pi

do {
key = true;
while (key == true)

Swap(lock,key);
critical section

lock = false;
remainder section

}

Silberschatz, Galvin and Gagne 20027.24Operating System Concepts

Semaphores

� Synchronization tool that does not require busy waiting.
� Semaphore S – integer variable
� can only be accessed via two indivisible (atomic)

operations
wait (S):

while S≤≤≤≤ 0 do no-op;
S--;

signal (S):
S++;

Silberschatz, Galvin and Gagne 20027.25Operating System Concepts

Critical Section of n Processes

� Shared data:
 semaphore mutex; //initially mutex = 1

� Process Pi:

do {
 wait(mutex);
 critical section

 signal(mutex);
 remainder section
} while (1);

Silberschatz, Galvin and Gagne 20027.26Operating System Concepts

Semaphore Implementation

� Define a semaphore as a record
typedef struct {
 int value;
 struct process *L;
} semaphore;

� Assume two simple operations:
✦ block suspends the process that invokes it.

✦ wakeup(P) resumes the execution of a blocked process P.

Silberschatz, Galvin and Gagne 20027.27Operating System Concepts

Implementation

� Semaphore operations now defined as
wait(S):

S.value--;
if (S.value < 0) {

add this process to S.L;
block;

}

signal(S):
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

Silberschatz, Galvin and Gagne 20027.28Operating System Concepts

Semaphore as a General Synchronization Tool

� Execute B in Pj only after A executed in Pi

� Use semaphore flag initialized to 0
� Code:

Pi Pj

 � �
A wait(flag)

signal(flag) B

Silberschatz, Galvin and Gagne 20027.29Operating System Concepts

Deadlock and Starvation

� Deadlock – two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes.

� Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

 � �
signal(S); signal(Q);

signal(Q) signal(S);

� Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.

Silberschatz, Galvin and Gagne 20027.30Operating System Concepts

Two Types of Semaphores

� Counting semaphore – integer value can range over
an unrestricted domain.

� Binary semaphore – integer value can range only
between 0 and 1; can be simpler to implement.

� Can implement a counting semaphore S as a binary
semaphore.

Silberschatz, Galvin and Gagne 20027.31Operating System Concepts

Implementing S as a Binary Semaphore

� Data structures:
binary-semaphore S1, S2;
int C:

� Initialization:
S1 = 1
S2 = 0
C = initial value of semaphore S

Silberschatz, Galvin and Gagne 20027.32Operating System Concepts

Implementing S

� wait operation
wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

� signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

Silberschatz, Galvin and Gagne 20027.33Operating System Concepts

Classical Problems of Synchronization

� Bounded-Buffer Problem

� Readers and Writers Problem

� Dining-Philosophers Problem

Silberschatz, Galvin and Gagne 20027.34Operating System Concepts

Bounded-Buffer Problem

� Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1

Silberschatz, Galvin and Gagne 20027.35Operating System Concepts

Bounded-Buffer Problem Producer Process

do {
…

produce an item in nextp
 …

wait(empty);
wait(mutex);

 …
add nextp to buffer

 …
signal(mutex);
signal(full);

} while (1);

Silberschatz, Galvin and Gagne 20027.36Operating System Concepts

Bounded-Buffer Problem Consumer Process

do {
wait(full)
wait(mutex);

 …
remove an item from buffer to nextc

 …
signal(mutex);
signal(empty);

 …
consume the item in nextc

 …
} while (1);

Silberschatz, Galvin and Gagne 20027.37Operating System Concepts

Readers-Writers Problem

� Shared data

semaphore mutex, wrt;

Initially

mutex = 1, wrt = 1, readcount = 0

Silberschatz, Galvin and Gagne 20027.38Operating System Concepts

Readers-Writers Problem Writer Process

wait(wrt);
 …

writing is performed
 …

signal(wrt);

Silberschatz, Galvin and Gagne 20027.39Operating System Concepts

Readers-Writers Problem Reader Process

wait(mutex);
readcount++;
if (readcount == 1)

wait(rt);
signal(mutex);

 …
reading is performed

 …
wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex):

Silberschatz, Galvin and Gagne 20027.40Operating System Concepts

Dining-Philosophers Problem

� Shared data
semaphore chopstick[5];

Initially all values are 1

Silberschatz, Galvin and Gagne 20027.41Operating System Concepts

Dining-Philosophers Problem

� Philosopher i:
do {

wait(chopstick[i])
wait(chopstick[(i+1) % 5])

 …
eat
 …

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

 …
think
 …

} while (1);

Silberschatz, Galvin and Gagne 20027.42Operating System Concepts

Critical Regions

� High-level synchronization construct
� A shared variable v of type T, is declared as:

v: shared T
� Variable v accessed only inside statement

region v when B do S

where B is a boolean expression.

� While statement S is being executed, no other process
can access variable v.

Silberschatz, Galvin and Gagne 20027.43Operating System Concepts

Critical Regions

� Regions referring to the same shared variable exclude
each other in time.

� When a process tries to execute the region statement, the
Boolean expression B is evaluated. If B is true, statement
S is executed. If it is false, the process is delayed until B
becomes true and no other process is in the region
associated with v.

Silberschatz, Galvin and Gagne 20027.44Operating System Concepts

Example – Bounded Buffer

� Shared data:

struct buffer {
int pool[n];
int count, in, out;

}

Silberschatz, Galvin and Gagne 20027.45Operating System Concepts

Bounded Buffer Producer Process

� Producer process inserts nextp into the shared buffer

region buffer when(count < n) {
pool[in] = nextp;
in:= (in+1) % n;
count++;

}

Silberschatz, Galvin and Gagne 20027.46Operating System Concepts

Bounded Buffer Consumer Process

� Consumer process removes an item from the shared
buffer and puts it in nextc

region buffer when (count > 0) {
nextc = pool[out];
out = (out+1) % n;
count--;

}

Silberschatz, Galvin and Gagne 20027.47Operating System Concepts

Implementation region x when B do S

� Associate with the shared variable x, the following
variables:

semaphore mutex, first-delay, second-delay;
 int first-count, second-count;

� Mutually exclusive access to the critical section is
provided by mutex.

� If a process cannot enter the critical section because the
Boolean expression B is false, it initially waits on the
first-delay semaphore; moved to the second-delay
semaphore before it is allowed to reevaluate B.

Silberschatz, Galvin and Gagne 20027.48Operating System Concepts

Implementation

� Keep track of the number of processes waiting on first-
delay and second-delay, with first-count and second-
count respectively.

� The algorithm assumes a FIFO ordering in the queuing of
processes for a semaphore.

� For an arbitrary queuing discipline, a more complicated
implementation is required.

Silberschatz, Galvin and Gagne 20027.49Operating System Concepts

Monitors

� High-level synchronization construct that allows the safe sharing
of an abstract data type among concurrent processes.

monitor monitor-name
{

shared variable declarations
procedure body P1 (…) {

. . .
}
procedure body P2 (…) {

. . .
}
procedure body Pn (…) {

 . . .
}
{

initialization code
}

}

Silberschatz, Galvin and Gagne 20027.50Operating System Concepts

Monitors

� To allow a process to wait within the monitor, a
condition variable must be declared, as

condition x, y;
� Condition variable can only be used with the

operations wait and signal.
✦ The operation

x.wait();
means that the process invoking this operation is
suspended until another process invokes

x.signal();
✦ The x.signal operation resumes exactly one suspended

process. If no process is suspended, then the signal
operation has no effect.

Silberschatz, Galvin and Gagne 20027.51Operating System Concepts

Schematic View of a Monitor

Silberschatz, Galvin and Gagne 20027.52Operating System Concepts

Monitor With Condition Variables

Silberschatz, Galvin and Gagne 20027.53Operating System Concepts

Dining Philosophers Example

monitor dp
{

enum {thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i) // following slides
void putdown(int i) // following slides
void test(int i) // following slides
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}

Silberschatz, Galvin and Gagne 20027.54Operating System Concepts

Dining Philosophers
void pickup(int i) {

state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

}

Silberschatz, Galvin and Gagne 20027.55Operating System Concepts

Dining Philosophers
void test(int i) {

if ((state[(I + 4) % 5] != eating) &&
 (state[i] == hungry) &&
 (state[(i + 1) % 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}

Silberschatz, Galvin and Gagne 20027.56Operating System Concepts

Monitor Implementation Using Semaphores

� Variables
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

� Each external procedure F will be replaced by
wait(mutex);
 …
 body of F;
 …
if (next-count > 0)

signal(next)
else

signal(mutex);

� Mutual exclusion within a monitor is ensured.

Silberschatz, Galvin and Gagne 20027.57Operating System Concepts

Monitor Implementation

� For each condition variable x, we have:
semaphore x-sem; // (initially = 0)
int x-count = 0;

� The operation x.wait can be implemented as:

x-count++;
if (next-count > 0)

signal(next);
else

signal(mutex);
wait(x-sem);
x-count--;

Silberschatz, Galvin and Gagne 20027.58Operating System Concepts

Monitor Implementation

� The operation x.signal can be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

}

Silberschatz, Galvin and Gagne 20027.59Operating System Concepts

Monitor Implementation

� Conditional-wait construct: x.wait(c);
✦ c – integer expression evaluated when the wait operation is

executed.
✦ value of c (a priority number) stored with the name of the

process that is suspended.
✦ when x.signal is executed, process with smallest

associated priority number is resumed next.

� Check two conditions to establish correctness of system:
✦ User processes must always make their calls on the monitor

in a correct sequence.
✦ Must ensure that an uncooperative process does not ignore

the mutual-exclusion gateway provided by the monitor, and
try to access the shared resource directly, without using the
access protocols.

Silberschatz, Galvin and Gagne 20027.60Operating System Concepts

Solaris 2 Synchronization

� Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing.

� Uses adaptive mutexes for efficiency when protecting
data from short code segments.

� Uses condition variables and readers-writers locks when
longer sections of code need access to data.

� Uses turnstiles to order the list of threads waiting to
acquire either an adaptive mutex or reader-writer lock.

Silberschatz, Galvin and Gagne 20027.61Operating System Concepts

Windows 2000 Synchronization

� Uses interrupt masks to protect access to global
resources on uniprocessor systems.

� Uses spinlocks on multiprocessor systems.

� Also provides dispatcher objects which may act as wither
mutexes and semaphores.

� Dispatcher objects may also provide events. An event
acts much like a condition variable.

Silberschatz, Galvin and Gagne 20028.1Operating System Concepts

Chapter 8: Deadlocks

� System Model
� Deadlock Characterization
� Methods for Handling Deadlocks
� Deadlock Prevention
� Deadlock Avoidance
� Deadlock Detection
� Recovery from Deadlock
� Combined Approach to Deadlock Handling

Silberschatz, Galvin and Gagne 20028.2Operating System Concepts

The Deadlock Problem

� A set of blocked processes each holding a resource and
waiting to acquire a resource held by another process in
the set.

� Example
✦ System has 2 tape drives.

✦ P1 and P2 each hold one tape drive and each needs another
one.

� Example
✦ semaphores A and B, initialized to 1

 P0 P1

wait (A); wait(B)
wait (B); wait(A)

Silberschatz, Galvin and Gagne 20028.3Operating System Concepts

Bridge Crossing Example

� Traffic only in one direction.
� Each section of a bridge can be viewed as a resource.
� If a deadlock occurs, it can be resolved if one car backs

up (preempt resources and rollback).
� Several cars may have to be backed up if a deadlock

occurs.
� Starvation is possible.

Silberschatz, Galvin and Gagne 20028.4Operating System Concepts

System Model

� Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

� Each resource type Ri has Wi instances.
� Each process utilizes a resource as follows:

✦ request

✦ use

✦ release

Silberschatz, Galvin and Gagne 20028.5Operating System Concepts

Deadlock Characterization

� Mutual exclusion: only one process at a time can use a
resource.

� Hold and wait: a process holding at least one resource
is waiting to acquire additional resources held by other
processes.

� No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task.

� Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P0 is waiting for a resource that is
held by P1, P1 is waiting for a resource that is held by
P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

Silberschatz, Galvin and Gagne 20028.6Operating System Concepts

Resource-Allocation Graph

� V is partitioned into two types:
✦ P = {P1, P2, …, Pn}, the set consisting of all the processes in

the system.

✦ R = {R1, R2, …, Rm}, the set consisting of all resource types
in the system.

� request edge – directed edge P1 → Rj

� assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

Silberschatz, Galvin and Gagne 20028.7Operating System Concepts

Resource-Allocation Graph (Cont.)

� Process

� Resource Type with 4 instances

� Pi requests instance of Rj

� Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

Silberschatz, Galvin and Gagne 20028.8Operating System Concepts

Example of a Resource Allocation Graph

Silberschatz, Galvin and Gagne 20028.9Operating System Concepts

Resource Allocation Graph With A Deadlock

Silberschatz, Galvin and Gagne 20028.10Operating System Concepts

Resource Allocation Graph With A Cycle But No Deadlock

Silberschatz, Galvin and Gagne 20028.11Operating System Concepts

Basic Facts

� If graph contains no cycles � no deadlock.

� If graph contains a cycle �
✦ if only one instance per resource type, then deadlock.

✦ if several instances per resource type, possibility of
deadlock.

Silberschatz, Galvin and Gagne 20028.12Operating System Concepts

Methods for Handling Deadlocks

� Ensure that the system will never enter a deadlock state.

� Allow the system to enter a deadlock state and then
recover.

� Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX.

Silberschatz, Galvin and Gagne 20028.13Operating System Concepts

Deadlock Prevention

� Mutual Exclusion – not required for sharable resources;
must hold for nonsharable resources.

� Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any other
resources.

✦ Require process to request and be allocated all its
resources before it begins execution, or allow process to
request resources only when the process has none.

✦ Low resource utilization; starvation possible.

Restrain the ways request can be made.

Silberschatz, Galvin and Gagne 20028.14Operating System Concepts

Deadlock Prevention (Cont.)

� No Preemption –
✦ If a process that is holding some resources requests

another resource that cannot be immediately allocated to it,
then all resources currently being held are released.

✦ Preempted resources are added to the list of resources for
which the process is waiting.

✦ Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

� Circular Wait – impose a total ordering of all resource
types, and require that each process requests resources
in an increasing order of enumeration.

Silberschatz, Galvin and Gagne 20028.15Operating System Concepts

Deadlock Avoidance

� Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need.

� The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can
never be a circular-wait condition.

� Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

Requires that the system has some additional a priori information
available.

Silberschatz, Galvin and Gagne 20028.16Operating System Concepts

Safe State

� When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

� System is in safe state if there exists a safe sequence of all
processes.

� Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources
that Pi can still request can be satisfied by currently available
resources + resources held by all the Pj, with j<I.

✦ If Pi resource needs are not immediately available, then Pi can wait
until all Pj have finished.

✦ When Pj is finished, Pi can obtain needed resources, execute,
return allocated resources, and terminate.

✦ When Pi terminates, Pi+1 can obtain its needed resources, and so
on.

Silberschatz, Galvin and Gagne 20028.17Operating System Concepts

Basic Facts

� If a system is in safe state � no deadlocks.

� If a system is in unsafe state � possibility of deadlock.

� Avoidance � ensure that a system will never enter an
unsafe state.

Silberschatz, Galvin and Gagne 20028.18Operating System Concepts

Safe, Unsafe , Deadlock State

Silberschatz, Galvin and Gagne 20028.19Operating System Concepts

Resource-Allocation Graph Algorithm

� Claim edge Pi → Rj indicated that process Pj may request
resource Rj; represented by a dashed line.

� Claim edge converts to request edge when a process
requests a resource.

� When a resource is released by a process, assignment
edge reconverts to a claim edge.

� Resources must be claimed a priori in the system.

Silberschatz, Galvin and Gagne 20028.20Operating System Concepts

Resource-Allocation Graph For Deadlock Avoidance

Silberschatz, Galvin and Gagne 20028.21Operating System Concepts

Unsafe State In Resource-Allocation Graph

Silberschatz, Galvin and Gagne 20028.22Operating System Concepts

Banker’s Algorithm

� Multiple instances.

� Each process must a priori claim maximum use.

� When a process requests a resource it may have to wait.

� When a process gets all its resources it must return them
in a finite amount of time.

Silberschatz, Galvin and Gagne 20028.23Operating System Concepts

Data Structures for the Banker’s Algorithm

� Available: Vector of length m. If available [j] = k, there are
k instances of resource type Rj available.

� Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj.

� Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj.

� Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

Silberschatz, Galvin and Gagne 20028.24Operating System Concepts

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available
Finish [i] = false for i - 1,3, …, n.

2. Find and i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe
state.

Silberschatz, Galvin and Gagne 20028.25Operating System Concepts

Resource-Request Algorithm for Process Pi

 Request = request vector for process Pi. If Requesti [j] = k
then process Pi wants k instances of resource type Rj.

1. If Requesti ≤ Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3. Otherwise Pi must
wait, since resources are not available.

3. Pretend to allocate requested resources to Pi by modifying
the state as follows:

Available = Available = Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;;

• If safe � the resources are allocated to Pi.
• If unsafe � Pi must wait, and the old resource-allocation

state is restored

Silberschatz, Galvin and Gagne 20028.26Operating System Concepts

Example of Banker’s Algorithm

� 5 processes P0 through P4; 3 resource types A
(10 instances),
B (5instances, and C (7 instances).

� Snapshot at time T0:
Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
 P1 2 0 0 3 2 2
 P2 3 0 2 9 0 2
 P3 2 1 1 2 2 2
 P4 0 0 2 4 3 3

Silberschatz, Galvin and Gagne 20028.27Operating System Concepts

Example (Cont.)

� The content of the matrix. Need is defined to be Max –
Allocation.

Need
A B C

 P0 7 4 3
 P1 1 2 2
 P2 6 0 0
 P3 0 1 1
 P4 4 3 1

� The system is in a safe state since the sequence < P1, P3, P4,
P2, P0> satisfies safety criteria.

Silberschatz, Galvin and Gagne 20028.28Operating System Concepts

Example P1 Request (1,0,2) (Cont.)

� Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) �
true.

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 1 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

� Executing safety algorithm shows that sequence <P1, P3, P4,
P0, P2> satisfies safety requirement.

� Can request for (3,3,0) by P4 be granted?
� Can request for (0,2,0) by P0 be granted?

Silberschatz, Galvin and Gagne 20028.29Operating System Concepts

Deadlock Detection

� Allow system to enter deadlock state

� Detection algorithm

� Recovery scheme

Silberschatz, Galvin and Gagne 20028.30Operating System Concepts

Single Instance of Each Resource Type

� Maintain wait-for graph
✦ Nodes are processes.

✦ Pi → Pj if Pi is waiting for Pj.

� Periodically invoke an algorithm that searches for a cycle
in the graph.

� An algorithm to detect a cycle in a graph requires an
order of n2 operations, where n is the number of vertices
in the graph.

Silberschatz, Galvin and Gagne 20028.31Operating System Concepts

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Silberschatz, Galvin and Gagne 20028.32Operating System Concepts

Several Instances of a Resource Type

� Available: A vector of length m indicates the number of
available resources of each type.

� Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each
process.

� Request: An n x m matrix indicates the current request
of each process. If Request [ij] = k, then process Pi is
requesting k more instances of resource type. Rj.

Silberschatz, Galvin and Gagne 20028.33Operating System Concepts

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:
(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi ≠ 0, then
Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:
(a) Finish[i] == false

(b) Requesti ≤ Work

If no such i exists, go to step 4.

Silberschatz, Galvin and Gagne 20028.34Operating System Concepts

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 ≤ i ≤ n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked.

Algorithm requires an order of O(m x n2) operations to detect
whether the system is in deadlocked state.

Silberschatz, Galvin and Gagne 20028.35Operating System Concepts

Example of Detection Algorithm

� Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances).

� Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

� Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true
for all i.

Silberschatz, Galvin and Gagne 20028.36Operating System Concepts

Example (Cont.)

� P2 requests an additional instance of type C.
Request

A B C
 P0 0 0 0
 P1 2 0 1
P2 0 0 1
P3 1 0 0
P4 0 0 2

� State of system?
✦ Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests.

✦ Deadlock exists, consisting of processes P1, P2, P3, and P4.

Silberschatz, Galvin and Gagne 20028.37Operating System Concepts

Detection-Algorithm Usage

� When, and how often, to invoke depends on:
✦ How often a deadlock is likely to occur?

✦ How many processes will need to be rolled back?

✔ one for each disjoint cycle

� If detection algorithm is invoked arbitrarily, there may be
many cycles in the resource graph and so we would not
be able to tell which of the many deadlocked processes
“caused” the deadlock.

Silberschatz, Galvin and Gagne 20028.38Operating System Concepts

Recovery from Deadlock: Process Termination

� Abort all deadlocked processes.

� Abort one process at a time until the deadlock cycle is
eliminated.

� In which order should we choose to abort?
✦ Priority of the process.
✦ How long process has computed, and how much longer to

completion.
✦ Resources the process has used.
✦ Resources process needs to complete.
✦ How many processes will need to be terminated.
✦ Is process interactive or batch?

Silberschatz, Galvin and Gagne 20028.39Operating System Concepts

Recovery from Deadlock: Resource Preemption

� Selecting a victim – minimize cost.

� Rollback – return to some safe state, restart process for
that state.

� Starvation – same process may always be picked as
victim, include number of rollback in cost factor.

Silberschatz, Galvin and Gagne 20028.40Operating System Concepts

Combined Approach to Deadlock Handling

� Combine the three basic approaches
✦ prevention

✦ avoidance

✦ detection

 allowing the use of the optimal approach for each of
resources in the system.

� Partition resources into hierarchically ordered classes.

� Use most appropriate technique for handling deadlocks
within each class.

Silberschatz, Galvin and Gagne 20028.41Operating System Concepts

Traffic Deadlock for Exercise 8.4

Silberschatz, Galvin and Gagne 20029.1Operating System Concepts

Chapter 9: Memory Management

� Background
� Swapping
� Contiguous Allocation
� Paging
� Segmentation
� Segmentation with Paging

Silberschatz, Galvin and Gagne 20029.2Operating System Concepts

Background

� Program must be brought into memory and placed within
a process for it to be run.

� Input queue – collection of processes on the disk that are
waiting to be brought into memory to run the program.

� User programs go through several steps before being
run.

Silberschatz, Galvin and Gagne 20029.3Operating System Concepts

Binding of Instructions and Data to Memory

� Compile time: If memory location known a priori,
absolute code can be generated; must recompile code if
starting location changes.

� Load time: Must generate relocatable code if memory
location is not known at compile time.

� Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware support for
address maps (e.g., base and limit registers).

Address binding of instructions and data to memory addresses can
happen at three different stages.

Silberschatz, Galvin and Gagne 20029.4Operating System Concepts

Multistep Processing of a User Program

Silberschatz, Galvin and Gagne 20029.5Operating System Concepts

Logical vs. Physical Address Space

� The concept of a logical address space that is bound to a
separate physical address space is central to proper
memory management.

✦ Logical address – generated by the CPU; also referred to as
virtual address.

✦ Physical address – address seen by the memory unit.

� Logical and physical addresses are the same in compile-
time and load-time address-binding schemes; logical
(virtual) and physical addresses differ in execution-time
address-binding scheme.

Silberschatz, Galvin and Gagne 20029.6Operating System Concepts

Memory-Management Unit (MMU)

� Hardware device that maps virtual to physical address.

� In MMU scheme, the value in the relocation register is
added to every address generated by a user process at
the time it is sent to memory.

� The user program deals with logical addresses; it never
sees the real physical addresses.

Silberschatz, Galvin and Gagne 20029.7Operating System Concepts

Dynamic relocation using a relocation register

Silberschatz, Galvin and Gagne 20029.8Operating System Concepts

Dynamic Loading

� Routine is not loaded until it is called
� Better memory-space utilization; unused routine is never

loaded.
� Useful when large amounts of code are needed to handle

infrequently occurring cases.
� No special support from the operating system is required

implemented through program design.

Silberschatz, Galvin and Gagne 20029.9Operating System Concepts

Dynamic Linking

� Linking postponed until execution time.
� Small piece of code, stub, used to locate the appropriate

memory-resident library routine.
� Stub replaces itself with the address of the routine, and

executes the routine.
� Operating system needed to check if routine is in

processes’ memory address.
� Dynamic linking is particularly useful for libraries.

Silberschatz, Galvin and Gagne 20029.10Operating System Concepts

Overlays

� Keep in memory only those instructions and data that are
needed at any given time.

� Needed when process is larger than amount of memory
allocated to it.

� Implemented by user, no special support needed from
operating system, programming design of overlay
structure is complex

Silberschatz, Galvin and Gagne 20029.11Operating System Concepts

Overlays for a Two-Pass Assembler

Silberschatz, Galvin and Gagne 20029.12Operating System Concepts

Swapping

� A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for continued
execution.

� Backing store – fast disk large enough to accommodate copies
of all memory images for all users; must provide direct access to
these memory images.

� Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed.

� Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped.

� Modified versions of swapping are found on many systems, i.e.,
UNIX, Linux, and Windows.

Silberschatz, Galvin and Gagne 20029.13Operating System Concepts

Schematic View of Swapping

Silberschatz, Galvin and Gagne 20029.14Operating System Concepts

Contiguous Allocation

� Main memory usually into two partitions:
✦ Resident operating system, usually held in low memory with

interrupt vector.

✦ User processes then held in high memory.

� Single-partition allocation
✦ Relocation-register scheme used to protect user processes

from each other, and from changing operating-system code
and data.

✦ Relocation register contains value of smallest physical
address; limit register contains range of logical addresses –
each logical address must be less than the limit register.

Silberschatz, Galvin and Gagne 20029.15Operating System Concepts

Hardware Support for Relocation and Limit Registers

Silberschatz, Galvin and Gagne 20029.16Operating System Concepts

Contiguous Allocation (Cont.)

� Multiple-partition allocation
✦ Hole – block of available memory; holes of various size are

scattered throughout memory.

✦ When a process arrives, it is allocated memory from a hole
large enough to accommodate it.

✦ Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Silberschatz, Galvin and Gagne 20029.17Operating System Concepts

Dynamic Storage-Allocation Problem

� First-fit: Allocate the first hole that is big enough.
� Best-fit: Allocate the smallest hole that is big enough;

must search entire list, unless ordered by size.
Produces the smallest leftover hole.

� Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

How to satisfy a request of size n from a list of free holes.

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization.

Silberschatz, Galvin and Gagne 20029.18Operating System Concepts

Fragmentation

� External Fragmentation – total memory space exists to
satisfy a request, but it is not contiguous.

� Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size difference
is memory internal to a partition, but not being used.

� Reduce external fragmentation by compaction
✦ Shuffle memory contents to place all free memory together

in one large block.
✦ Compaction is possible only if relocation is dynamic, and is

done at execution time.
✦ I/O problem

✔ Latch job in memory while it is involved in I/O.
✔ Do I/O only into OS buffers.

Silberschatz, Galvin and Gagne 20029.19Operating System Concepts

Paging

� Logical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available.

� Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 8192 bytes).

� Divide logical memory into blocks of same size called pages.

� Keep track of all free frames.

� To run a program of size n pages, need to find n free frames
and load program.

� Set up a page table to translate logical to physical addresses.

� Internal fragmentation.

Silberschatz, Galvin and Gagne 20029.20Operating System Concepts

Address Translation Scheme

� Address generated by CPU is divided into:
✦ Page number (p) – used as an index into a page table which

contains base address of each page in physical memory.

✦ Page offset (d) – combined with base address to define the
physical memory address that is sent to the memory unit.

Silberschatz, Galvin and Gagne 20029.21Operating System Concepts

Address Translation Architecture

Silberschatz, Galvin and Gagne 20029.22Operating System Concepts

Paging Example

Silberschatz, Galvin and Gagne 20029.23Operating System Concepts

Paging Example

Silberschatz, Galvin and Gagne 20029.24Operating System Concepts

Free Frames

Before allocation After allocation

Silberschatz, Galvin and Gagne 20029.25Operating System Concepts

Implementation of Page Table

� Page table is kept in main memory.
� Page-table base register (PTBR) points to the page table.
� Page-table length register (PRLR) indicates size of the

page table.
� In this scheme every data/instruction access requires two

memory accesses. One for the page table and one for
the data/instruction.

� The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers
(TLBs)

Silberschatz, Galvin and Gagne 20029.26Operating System Concepts

Associative Memory

� Associative memory – parallel search

Address translation (A´, A´´)
✦ If A´ is in associative register, get frame # out.

✦ Otherwise get frame # from page table in memory

Page # Frame #

Silberschatz, Galvin and Gagne 20029.27Operating System Concepts

Paging Hardware With TLB

Silberschatz, Galvin and Gagne 20029.28Operating System Concepts

Effective Access Time

� Associative Lookup = ε time unit
� Assume memory cycle time is 1 microsecond
� Hit ratio – percentage of times that a page number is

found in the associative registers; ration related to
number of associative registers.

� Hit ratio = α
� Effective Access Time (EAT)

EAT = (1 + ε) α + (2 + ε)(1 – α)
= 2 + ε – α

Silberschatz, Galvin and Gagne 20029.29Operating System Concepts

Memory Protection

� Memory protection implemented by associating protection
bit with each frame.

� Valid-invalid bit attached to each entry in the page table:
✦ “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page.
✦ “invalid” indicates that the page is not in the process’ logical

address space.

Silberschatz, Galvin and Gagne 20029.30Operating System Concepts

Valid (v) or Invalid (i) Bit In A Page Table

Silberschatz, Galvin and Gagne 20029.31Operating System Concepts

Page Table Structure

� Hierarchical Paging

� Hashed Page Tables

� Inverted Page Tables

Silberschatz, Galvin and Gagne 20029.32Operating System Concepts

Hierarchical Page Tables

� Break up the logical address space into multiple page
tables.

� A simple technique is a two-level page table.

Silberschatz, Galvin and Gagne 20029.33Operating System Concepts

Two-Level Paging Example

� A logical address (on 32-bit machine with 4K page size) is
divided into:
✦ a page number consisting of 20 bits.
✦ a page offset consisting of 12 bits.

� Since the page table is paged, the page number is further
divided into:
✦ a 10-bit page number.
✦ a 10-bit page offset.

� Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table.

page number page offset

pi p2 d

10 10 12

Silberschatz, Galvin and Gagne 20029.34Operating System Concepts

Two-Level Page-Table Scheme

Silberschatz, Galvin and Gagne 20029.35Operating System Concepts

Address-Translation Scheme

� Address-translation scheme for a two-level 32-bit paging
architecture

Silberschatz, Galvin and Gagne 20029.36Operating System Concepts

Hashed Page Tables

� Common in address spaces > 32 bits.

� The virtual page number is hashed into a page table. This
page table contains a chain of elements hashing to the
same location.

� Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

Silberschatz, Galvin and Gagne 20029.37Operating System Concepts

Hashed Page Table

Silberschatz, Galvin and Gagne 20029.38Operating System Concepts

Inverted Page Table

� One entry for each real page of memory.
� Entry consists of the virtual address of the page stored in

that real memory location, with information about the
process that owns that page.

� Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs.

� Use hash table to limit the search to one — or at most a
few — page-table entries.

Silberschatz, Galvin and Gagne 20029.39Operating System Concepts

Inverted Page Table Architecture

Silberschatz, Galvin and Gagne 20029.40Operating System Concepts

Shared Pages

� Shared code
✦ One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).

✦ Shared code must appear in same location in the logical
address space of all processes.

� Private code and data
✦ Each process keeps a separate copy of the code and data.

✦ The pages for the private code and data can appear
anywhere in the logical address space.

Silberschatz, Galvin and Gagne 20029.41Operating System Concepts

Shared Pages Example

Silberschatz, Galvin and Gagne 20029.42Operating System Concepts

Segmentation

� Memory-management scheme that supports user view of
memory.

� A program is a collection of segments. A segment is a logical
unit such as:

main program,
procedure,
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays

Silberschatz, Galvin and Gagne 20029.43Operating System Concepts

User’s View of a Program

Silberschatz, Galvin and Gagne 20029.44Operating System Concepts

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Silberschatz, Galvin and Gagne 20029.45Operating System Concepts

Segmentation Architecture

� Logical address consists of a two tuple:
<segment-number, offset>,

� Segment table – maps two-dimensional physical
addresses; each table entry has:

✦ base – contains the starting physical address where the
segments reside in memory.

✦ limit – specifies the length of the segment.

� Segment-table base register (STBR) points to the
segment table’s location in memory.

� Segment-table length register (STLR) indicates number of
segments used by a program;
 segment number s is legal if s < STLR.

Silberschatz, Galvin and Gagne 20029.46Operating System Concepts

Segmentation Architecture (Cont.)

� Relocation.
✦ dynamic
✦ by segment table

� Sharing.
✦ shared segments

✦ same segment number

� Allocation.
✦ first fit/best fit

✦ external fragmentation

Silberschatz, Galvin and Gagne 20029.47Operating System Concepts

Segmentation Architecture (Cont.)

� Protection. With each entry in segment table associate:
✦ validation bit = 0 � illegal segment
✦ read/write/execute privileges

� Protection bits associated with segments; code sharing
occurs at segment level.

� Since segments vary in length, memory allocation is a
dynamic storage-allocation problem.

� A segmentation example is shown in the following
diagram

Silberschatz, Galvin and Gagne 20029.48Operating System Concepts

Segmentation Hardware

Silberschatz, Galvin and Gagne 20029.49Operating System Concepts

Example of Segmentation

Silberschatz, Galvin and Gagne 20029.50Operating System Concepts

Sharing of Segments

Silberschatz, Galvin and Gagne 20029.51Operating System Concepts

Segmentation with Paging – MULTICS

� The MULTICS system solved problems of external
fragmentation and lengthy search times by paging the
segments.

� Solution differs from pure segmentation in that the
segment-table entry contains not the base address of the
segment, but rather the base address of a page table for
this segment.

Silberschatz, Galvin and Gagne 20029.52Operating System Concepts

MULTICS Address Translation Scheme

Silberschatz, Galvin and Gagne 20029.53Operating System Concepts

Segmentation with Paging – Intel 386

� As shown in the following diagram, the Intel 386 uses
segmentation with paging for memory management with a
two-level paging scheme.

Silberschatz, Galvin and Gagne 20029.54Operating System Concepts

Intel 30386 Address Translation

Silberschatz, Galvin and Gagne 200210.1Operating System Concepts

Chapter 10: Virtual Memory

� Background
� Demand Paging
� Process Creation
� Page Replacement
� Allocation of Frames
� Thrashing
� Operating System Examples

Silberschatz, Galvin and Gagne 200210.2Operating System Concepts

Background

� Virtual memory – separation of user logical memory
from physical memory.

✦ Only part of the program needs to be in memory for
execution.

✦ Logical address space can therefore be much larger than
physical address space.

✦ Allows address spaces to be shared by several processes.

✦ Allows for more efficient process creation.

� Virtual memory can be implemented via:
✦ Demand paging

✦ Demand segmentation

Silberschatz, Galvin and Gagne 200210.3Operating System Concepts

Virtual Memory That is Larger Than Physical Memory

Silberschatz, Galvin and Gagne 200210.4Operating System Concepts

Demand Paging

� Bring a page into memory only when it is needed.
✦ Less I/O needed

✦ Less memory needed

✦ Faster response
✦ More users

� Page is needed � reference to it
✦ invalid reference � abort

✦ not-in-memory � bring to memory

Silberschatz, Galvin and Gagne 200210.5Operating System Concepts

Transfer of a Paged Memory to Contiguous Disk Space

Silberschatz, Galvin and Gagne 200210.6Operating System Concepts

Valid-Invalid Bit

� With each page table entry a valid–invalid bit is
associated
(1 � in-memory, 0 � not-in-memory)

� Initially valid–invalid but is set to 0 on all entries.
� Example of a page table snapshot.

� During address translation, if valid–invalid bit in page
table entry is 0 � page fault.

1
1
1
1
0

0
0

�

Frame # valid-invalid bit

page table

Silberschatz, Galvin and Gagne 200210.7Operating System Concepts

Page Table When Some Pages Are Not in Main Memory

Silberschatz, Galvin and Gagne 200210.8Operating System Concepts

Page Fault

� If there is ever a reference to a page, first reference will
trap to
OS � page fault

� OS looks at another table to decide:
✦ Invalid reference � abort.
✦ Just not in memory.

� Get empty frame.
� Swap page into frame.
� Reset tables, validation bit = 1.
� Restart instruction: Least Recently Used

✦ block move

✦ auto increment/decrement location

Silberschatz, Galvin and Gagne 200210.9Operating System Concepts

Steps in Handling a Page Fault

Silberschatz, Galvin and Gagne 200210.10Operating System Concepts

What happens if there is no free frame?

� Page replacement – find some page in memory, but not
really in use, swap it out.

✦ algorithm

✦ performance – want an algorithm which will result in
minimum number of page faults.

� Same page may be brought into memory several times.

Silberschatz, Galvin and Gagne 200210.11Operating System Concepts

Performance of Demand Paging

� Page Fault Rate 0 ≤ p ≤ 1.0
✦ if p = 0 no page faults

✦ if p = 1, every reference is a fault

� Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

Silberschatz, Galvin and Gagne 200210.12Operating System Concepts

Demand Paging Example

� Memory access time = 1 microsecond

� 50% of the time the page that is being replaced has been
modified and therefore needs to be swapped out.

� Swap Page Time = 10 msec = 10,000 msec
EAT = (1 – p) x 1 + p (15000)

1 + 15000P (in msec)

Silberschatz, Galvin and Gagne 200210.13Operating System Concepts

Process Creation

� Virtual memory allows other benefits during process
creation:

- Copy-on-Write

- Memory-Mapped Files

Silberschatz, Galvin and Gagne 200210.14Operating System Concepts

Copy-on-Write

� Copy-on-Write (COW) allows both parent and child
processes to initially share the same pages in memory.

If either process modifies a shared page, only then is the
page copied.

� COW allows more efficient process creation as only
modified pages are copied.

� Free pages are allocated from a pool of zeroed-out
pages.

Silberschatz, Galvin and Gagne 200210.15Operating System Concepts

Memory-Mapped Files

� Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory.

� A file is initially read using demand paging. A page-sized portion
of the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

� Simplifies file access by treating file I/O through memory rather
than read() write() system calls.

� Also allows several processes to map the same file allowing the
pages in memory to be shared.

Silberschatz, Galvin and Gagne 200210.16Operating System Concepts

Memory Mapped Files

Silberschatz, Galvin and Gagne 200210.17Operating System Concepts

Page Replacement

� Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement.

� Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk.

� Page replacement completes separation between logical
memory and physical memory – large virtual memory can
be provided on a smaller physical memory.

Silberschatz, Galvin and Gagne 200210.18Operating System Concepts

Need For Page Replacement

Silberschatz, Galvin and Gagne 200210.19Operating System Concepts

Basic Page Replacement

� Find the location of the desired page on disk.

� Find a free frame:
- If there is a free frame, use it.
- If there is no free frame, use a page replacement
algorithm to select a victim frame.

� Read the desired page into the (newly) free frame.
Update the page and frame tables.

� Restart the process.

Silberschatz, Galvin and Gagne 200210.20Operating System Concepts

Page Replacement

Silberschatz, Galvin and Gagne 200210.21Operating System Concepts

Page Replacement Algorithms

� Want lowest page-fault rate.
� Evaluate algorithm by running it on a particular string of

memory references (reference string) and computing the
number of page faults on that string.

� In all our examples, the reference string is
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Silberschatz, Galvin and Gagne 200210.22Operating System Concepts

Graph of Page Faults Versus The Number of Frames

Silberschatz, Galvin and Gagne 200210.23Operating System Concepts

First-In-First-Out (FIFO) Algorithm

� Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
� 3 frames (3 pages can be in memory at a time per

process)

� 4 frames

� FIFO Replacement – Belady’s Anomaly
✦ more frames � less page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

Silberschatz, Galvin and Gagne 200210.24Operating System Concepts

FIFO Page Replacement

Silberschatz, Galvin and Gagne 200210.25Operating System Concepts

FIFO Illustrating Belady’s Anamoly

Silberschatz, Galvin and Gagne 200210.26Operating System Concepts

Optimal Algorithm

� Replace page that will not be used for longest period of
time.

� 4 frames example
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� How do you know this?
� Used for measuring how well your algorithm performs.

1

2

3

4

6 page faults

4 5

Silberschatz, Galvin and Gagne 200210.27Operating System Concepts

Optimal Page Replacement

Silberschatz, Galvin and Gagne 200210.28Operating System Concepts

Least Recently Used (LRU) Algorithm

� Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� Counter implementation
✦ Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the
counter.

✦ When a page needs to be changed, look at the counters to
determine which are to change.

1

2

3

5

4

4 3

5

Silberschatz, Galvin and Gagne 200210.29Operating System Concepts

LRU Page Replacement

Silberschatz, Galvin and Gagne 200210.30Operating System Concepts

LRU Algorithm (Cont.)

� Stack implementation – keep a stack of page numbers in
a double link form:

✦ Page referenced:

✔ move it to the top

✔ requires 6 pointers to be changed
✦ No search for replacement

Silberschatz, Galvin and Gagne 200210.31Operating System Concepts

Use Of A Stack to Record The Most Recent Page References

Silberschatz, Galvin and Gagne 200210.32Operating System Concepts

LRU Approximation Algorithms

� Reference bit
✦ With each page associate a bit, initially = 0
✦ When page is referenced bit set to 1.

✦ Replace the one which is 0 (if one exists). We do not know
the order, however.

� Second chance
✦ Need reference bit.

✦ Clock replacement.

✦ If page to be replaced (in clock order) has reference bit = 1.
then:

✔ set reference bit 0.
✔ leave page in memory.

✔ replace next page (in clock order), subject to same
rules.

Silberschatz, Galvin and Gagne 200210.33Operating System Concepts

Second-Chance (clock) Page-Replacement Algorithm

Silberschatz, Galvin and Gagne 200210.34Operating System Concepts

Counting Algorithms

� Keep a counter of the number of references that have
been made to each page.

� LFU Algorithm: replaces page with smallest count.

� MFU Algorithm: based on the argument that the page
with the smallest count was probably just brought in and
has yet to be used.

Silberschatz, Galvin and Gagne 200210.35Operating System Concepts

Allocation of Frames

� Each process needs minimum number of pages.
� Example: IBM 370 – 6 pages to handle SS MOVE

instruction:
✦ instruction is 6 bytes, might span 2 pages.

✦ 2 pages to handle from.
✦ 2 pages to handle to.

� Two major allocation schemes.
✦ fixed allocation
✦ priority allocation

Silberschatz, Galvin and Gagne 200210.36Operating System Concepts

Fixed Allocation

� Equal allocation – e.g., if 100 frames and 5 processes,
give each 20 pages.

� Proportional allocation – Allocate according to the size of
process.

m
S
spa

m
sS

ps

i
ii

i

ii

×==

=
�=

=

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10
127
10
64

2

1

2

≈×=

≈×=

=
=
=

a

a

s
s
m

i

Silberschatz, Galvin and Gagne 200210.37Operating System Concepts

Priority Allocation

� Use a proportional allocation scheme using priorities
rather than size.

� If process Pi generates a page fault,
✦ select for replacement one of its frames.

✦ select for replacement a frame from a process with lower
priority number.

Silberschatz, Galvin and Gagne 200210.38Operating System Concepts

Global vs. Local Allocation

� Global replacement – process selects a replacement
frame from the set of all frames; one process can take a
frame from another.

� Local replacement – each process selects from only its
own set of allocated frames.

Silberschatz, Galvin and Gagne 200210.39Operating System Concepts

Thrashing

� If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

✦ low CPU utilization.

✦ operating system thinks that it needs to increase the degree
of multiprogramming.

✦ another process added to the system.

� Thrashing ≡ a process is busy swapping pages in and
out.

Silberschatz, Galvin and Gagne 200210.40Operating System Concepts

Thrashing

� Why does paging work?
Locality model

✦ Process migrates from one locality to another.
✦ Localities may overlap.

� Why does thrashing occur?
Σ size of locality > total memory size

Silberschatz, Galvin and Gagne 200210.41Operating System Concepts

Locality In A Memory-Reference Pattern

Silberschatz, Galvin and Gagne 200210.42Operating System Concepts

Working-Set Model

� ∆ ≡ working-set window ≡ a fixed number of page
references
Example: 10,000 instruction

� WSSi (working set of Process Pi) =
total number of pages referenced in the most recent ∆
(varies in time)

✦ if ∆ too small will not encompass entire locality.

✦ if ∆ too large will encompass several localities.
✦ if ∆ = ∞ � will encompass entire program.

� D = Σ WSSi ≡ total demand frames
� if D > m � Thrashing
� Policy if D > m, then suspend one of the processes.

Silberschatz, Galvin and Gagne 200210.43Operating System Concepts

Working-set model

Silberschatz, Galvin and Gagne 200210.44Operating System Concepts

Keeping Track of the Working Set

� Approximate with interval timer + a reference bit
� Example: ∆ = 10,000

✦ Timer interrupts after every 5000 time units.

✦ Keep in memory 2 bits for each page.
✦ Whenever a timer interrupts copy and sets the values of all

reference bits to 0.

✦ If one of the bits in memory = 1 � page in working set.

� Why is this not completely accurate?
� Improvement = 10 bits and interrupt every 1000 time

units.

Silberschatz, Galvin and Gagne 200210.45Operating System Concepts

Page-Fault Frequency Scheme

� Establish “acceptable” page-fault rate.
✦ If actual rate too low, process loses frame.
✦ If actual rate too high, process gains frame.

Silberschatz, Galvin and Gagne 200210.46Operating System Concepts

Other Considerations

� Prepaging

� Page size selection
✦ fragmentation

✦ table size
✦ I/O overhead

✦ locality

Silberschatz, Galvin and Gagne 200210.47Operating System Concepts

Other Considerations (Cont.)

� TLB Reach - The amount of memory accessible from the
TLB.

� TLB Reach = (TLB Size) X (Page Size)

� Ideally, the working set of each process is stored in the
TLB. Otherwise there is a high degree of page faults.

Silberschatz, Galvin and Gagne 200210.48Operating System Concepts

Increasing the Size of the TLB

� Increase the Page Size. This may lead to an increase in
fragmentation as not all applications require a large page
size.

� Provide Multiple Page Sizes. This allows applications
that require larger page sizes the opportunity to use them
without an increase in fragmentation.

Silberschatz, Galvin and Gagne 200210.49Operating System Concepts

Other Considerations (Cont.)

� Program structure
✦ int A[][] = new int[1024][1024];
✦ Each row is stored in one page

✦ Program 1 for (j = 0; j < A.length; j++)
for (i = 0; i < A.length; i++)

A[i,j] = 0;
1024 x 1024 page faults

✦ Program 2 for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)

A[i,j] = 0;

1024 page faults

Silberschatz, Galvin and Gagne 200210.50Operating System Concepts

Other Considerations (Cont.)

� I/O Interlock – Pages must sometimes be locked into
memory.

� Consider I/O. Pages that are used for copying a file from
a device must be locked from being selected for eviction
by a page replacement algorithm.

Silberschatz, Galvin and Gagne 200210.51Operating System Concepts

Reason Why Frames Used For I/O Must Be In Memory

Silberschatz, Galvin and Gagne 200210.52Operating System Concepts

Operating System Examples

� Windows NT

� Solaris 2

Silberschatz, Galvin and Gagne 200210.53Operating System Concepts

Windows NT

� Uses demand paging with clustering. Clustering brings
in pages surrounding the faulting page.

� Processes are assigned working set minimum and
working set maximum.

� Working set minimum is the minimum number of pages
the process is guaranteed to have in memory.

� A process may be assigned as many pages up to its
working set maximum.

� When the amount of free memory in the system falls
below a threshold, automatic working set trimming is
performed to restore the amount of free memory.

� Working set trimming removes pages from processes that
have pages in excess of their working set minimum.

Silberschatz, Galvin and Gagne 200210.54Operating System Concepts

Solaris 2

� Maintains a list of free pages to assign faulting processes.

� Lotsfree – threshold parameter to begin paging.

� Paging is peformed by pageout process.

� Pageout scans pages using modified clock algorithm.

� Scanrate is the rate at which pages are scanned. This
ranged from slowscan to fastscan.

� Pageout is called more frequently depending upon the
amount of free memory available.

Silberschatz, Galvin and Gagne 200210.55Operating System Concepts

Solar Page Scanner

Silberschatz, Galvin and Gagne 200211.1Operating System Concepts

Chapter 11: File-System Interface

� File Concept

� Access Methods

� Directory Structure

� File System Mounting

� File Sharing

� Protection

Silberschatz, Galvin and Gagne 200211.2Operating System Concepts

File Concept

� Contiguous logical address space

� Types:
✦ Data

✔ numeric

✔ character
✔ binary

✦ Program

Silberschatz, Galvin and Gagne 200211.3Operating System Concepts

File Structure

� None - sequence of words, bytes
� Simple record structure

✦ Lines

✦ Fixed length

✦ Variable length

� Complex Structures
✦ Formatted document
✦ Relocatable load file

� Can simulate last two with first method by inserting
appropriate control characters.

� Who decides:
✦ Operating system

✦ Program

Silberschatz, Galvin and Gagne 200211.4Operating System Concepts

File Attributes

� Name – only information kept in human-readable form.
� Type – needed for systems that support different types.
� Location – pointer to file location on device.
� Size – current file size.
� Protection – controls who can do reading, writing,

executing.
� Time, date, and user identification – data for protection,

security, and usage monitoring.
� Information about files are kept in the directory structure,

which is maintained on the disk.

Silberschatz, Galvin and Gagne 200211.5Operating System Concepts

File Operations

� Create
� Write
� Read
� Reposition within file – file seek
� Delete
� Truncate
� Open(Fi) – search the directory structure on disk for entry

Fi, and move the content of entry to memory.
� Close (Fi) – move the content of entry Fi in memory to

directory structure on disk.

Silberschatz, Galvin and Gagne 200211.6Operating System Concepts

File Types – Name, Extension

Silberschatz, Galvin and Gagne 200211.7Operating System Concepts

Access Methods

� Sequential Access
read next
write next
reset
no read after last write

(rewrite)
� Direct Access

read n
write n
position to n

read next
write next

rewrite n
n = relative block number

Silberschatz, Galvin and Gagne 200211.8Operating System Concepts

Sequential-access File

Silberschatz, Galvin and Gagne 200211.9Operating System Concepts

Simulation of Sequential Access on a Direct-access File

Silberschatz, Galvin and Gagne 200211.10Operating System Concepts

Example of Index and Relative Files

Silberschatz, Galvin and Gagne 200211.11Operating System Concepts

Directory Structure

� A collection of nodes containing information about all
files.

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk.
Backups of these two structures are kept on tapes.

Silberschatz, Galvin and Gagne 200211.12Operating System Concepts

A Typical File-system Organization

Silberschatz, Galvin and Gagne 200211.13Operating System Concepts

Information in a Device Directory

� Name
� Type
� Address
� Current length
� Maximum length
� Date last accessed (for archival)
� Date last updated (for dump)
� Owner ID (who pays)
� Protection information (discuss later)

Silberschatz, Galvin and Gagne 200211.14Operating System Concepts

Operations Performed on Directory

� Search for a file
� Create a file
� Delete a file
� List a directory
� Rename a file
� Traverse the file system

Silberschatz, Galvin and Gagne 200211.15Operating System Concepts

Organize the Directory (Logically) to Obtain

� Efficiency – locating a file quickly.
� Naming – convenient to users.

✦ Two users can have same name for different files.

✦ The same file can have several different names.

� Grouping – logical grouping of files by properties, (e.g.,
all Java programs, all games, …)

Silberschatz, Galvin and Gagne 200211.16Operating System Concepts

Single-Level Directory

� A single directory for all users.

Naming problem

Grouping problem

Silberschatz, Galvin and Gagne 200211.17Operating System Concepts

Two-Level Directory

� Separate directory for each user.

•Path name
•Can have the same file name for different user
•Efficient searching
•No grouping capability

Silberschatz, Galvin and Gagne 200211.18Operating System Concepts

Tree-Structured Directories

Silberschatz, Galvin and Gagne 200211.19Operating System Concepts

Tree-Structured Directories (Cont.)

� Efficient searching

� Grouping Capability

� Current directory (working directory)
✦ cd /spell/mail/prog
✦ type list

Silberschatz, Galvin and Gagne 200211.20Operating System Concepts

Tree-Structured Directories (Cont.)

� Absolute or relative path name
� Creating a new file is done in current directory.
� Delete a file

rm <file-name>
� Creating a new subdirectory is done in current directory.

mkdir <dir-name>

Example: if in current directory /mail
mkdir count

mail

prog copy prt exp count

Deleting “mail” � deleting the entire subtree rooted by “mail”.

Silberschatz, Galvin and Gagne 200211.21Operating System Concepts

Acyclic-Graph Directories

� Have shared subdirectories and files.

Silberschatz, Galvin and Gagne 200211.22Operating System Concepts

Acyclic-Graph Directories (Cont.)

� Two different names (aliasing)

� If dict deletes list � dangling pointer.
Solutions:

✦ Backpointers, so we can delete all pointers.
Variable size records a problem.

✦ Backpointers using a daisy chain organization.
✦ Entry-hold-count solution.

Silberschatz, Galvin and Gagne 200211.23Operating System Concepts

General Graph Directory

Silberschatz, Galvin and Gagne 200211.24Operating System Concepts

General Graph Directory (Cont.)

� How do we guarantee no cycles?
✦ Allow only links to file not subdirectories.
✦ Garbage collection.

✦ Every time a new link is added use a cycle detection
algorithm to determine whether it is OK.

Silberschatz, Galvin and Gagne 200211.25Operating System Concepts

File System Mounting

� A file system must be mounted before it can be
accessed.

� A unmounted file system (I.e. Fig. 11-11(b)) is mounted at
a mount point.

Silberschatz, Galvin and Gagne 200211.26Operating System Concepts

(a) Existing. (b) Unmounted Partition

Silberschatz, Galvin and Gagne 200211.27Operating System Concepts

Mount Point

Silberschatz, Galvin and Gagne 200211.28Operating System Concepts

File Sharing

� Sharing of files on multi-user systems is desirable.

� Sharing may be done through a protection scheme.

� On distributed systems, files may be shared across a
network.

� Network File System (NFS) is a common distributed file-
sharing method.

Silberschatz, Galvin and Gagne 200211.29Operating System Concepts

Protection

� File owner/creator should be able to control:
✦ what can be done
✦ by whom

� Types of access
✦ Read
✦ Write

✦ Execute

✦ Append
✦ Delete

✦ List

Silberschatz, Galvin and Gagne 200211.30Operating System Concepts

Access Lists and Groups
� Mode of access: read, write, execute
� Three classes of users

RWX
a) owner access 7 � 1 1 1

RWX
b) group access 6 � 1 1 0

RWX
c) public access 1 � 0 0 1

� Ask manager to create a group (unique name), say G,
and add some users to the group.

� For a particular file (say game) or subdirectory, define an
appropriate access.

owner group public

chmod 761 game

Attach a group to a file
 chgrp G game

Silberschatz, Galvin and Gagne 200212.1Operating System Concepts

 Chapter 12: File System Implementation

� File System Structure
� File System Implementation
� Directory Implementation
� Allocation Methods
� Free-Space Management
� Efficiency and Performance
� Recovery
� Log-Structured File Systems
� NFS

Silberschatz, Galvin and Gagne 200212.2Operating System Concepts

File-System Structure

� File structure
✦ Logical storage unit

✦ Collection of related information

� File system resides on secondary storage (disks).
� File system organized into layers.
� File control block – storage structure consisting of

information about a file.

Silberschatz, Galvin and Gagne 200212.3Operating System Concepts

Layered File System

Silberschatz, Galvin and Gagne 200212.4Operating System Concepts

A Typical File Control Block

Silberschatz, Galvin and Gagne 200212.5Operating System Concepts

In-Memory File System Structures

� The following figure illustrates the necessary file system
structures provided by the operating systems.

� Figure 12-3(a) refers to opening a file.

� Figure 12-3(b) refers to reading a file.

Silberschatz, Galvin and Gagne 200212.6Operating System Concepts

In-Memory File System Structures

Silberschatz, Galvin and Gagne 200212.7Operating System Concepts

Virtual File Systems

� Virtual File Systems (VFS) provide an object-oriented
way of implementing file systems.

� VFS allows the same system call interface (the API) to be
used for different types of file systems.

� The API is to the VFS interface, rather than any specific
type of file system.

Silberschatz, Galvin and Gagne 200212.8Operating System Concepts

Schematic View of Virtual File System

Silberschatz, Galvin and Gagne 200212.9Operating System Concepts

Directory Implementation

� Linear list of file names with pointer to the data blocks.
✦ simple to program

✦ time-consuming to execute

� Hash Table – linear list with hash data structure.
✦ decreases directory search time
✦ collisions – situations where two file names hash to the

same location

✦ fixed size

Silberschatz, Galvin and Gagne 200212.10Operating System Concepts

Allocation Methods

� An allocation method refers to how disk blocks are
allocated for files:

� Contiguous allocation

� Linked allocation

� Indexed allocation

Silberschatz, Galvin and Gagne 200212.11Operating System Concepts

Contiguous Allocation

� Each file occupies a set of contiguous blocks on the disk.

� Simple – only starting location (block #) and length
(number of blocks) are required.

� Random access.

� Wasteful of space (dynamic storage-allocation problem).

� Files cannot grow.

Silberschatz, Galvin and Gagne 200212.12Operating System Concepts

Contiguous Allocation of Disk Space

Silberschatz, Galvin and Gagne 200212.13Operating System Concepts

Extent-Based Systems

� Many newer file systems (I.e. Veritas File System) use a
modified contiguous allocation scheme.

� Extent-based file systems allocate disk blocks in extents.

� An extent is a contiguous block of disks. Extents are
allocated for file allocation. A file consists of one or more
extents.

Silberschatz, Galvin and Gagne 200212.14Operating System Concepts

Linked Allocation

� Each file is a linked list of disk blocks: blocks may be
scattered anywhere on the disk.

pointerblock =

Silberschatz, Galvin and Gagne 200212.15Operating System Concepts

Linked Allocation (Cont.)

� Simple – need only starting address
� Free-space management system – no waste of space
� No random access
� Mapping

Block to be accessed is the Qth block in the linked chain
of blocks representing the file.
Displacement into block = R + 1

File-allocation table (FAT) – disk-space allocation used by
MS-DOS and OS/2.

LA/511
Q

R

Silberschatz, Galvin and Gagne 200212.16Operating System Concepts

Linked Allocation

Silberschatz, Galvin and Gagne 200212.17Operating System Concepts

File-Allocation Table

Silberschatz, Galvin and Gagne 200212.18Operating System Concepts

Indexed Allocation

� Brings all pointers together into the index block.
� Logical view.

index table

Silberschatz, Galvin and Gagne 200212.19Operating System Concepts

Example of Indexed Allocation

Silberschatz, Galvin and Gagne 200212.20Operating System Concepts

Indexed Allocation (Cont.)

� Need index table
� Random access
� Dynamic access without external fragmentation, but have

overhead of index block.
� Mapping from logical to physical in a file of maximum size

of 256K words and block size of 512 words. We need
only 1 block for index table.

LA/512
Q

R

Q = displacement into index table
R = displacement into block

Silberschatz, Galvin and Gagne 200212.21Operating System Concepts

Indexed Allocation – Mapping (Cont.)

� Mapping from logical to physical in a file of unbounded
length (block size of 512 words).

� Linked scheme – Link blocks of index table (no limit on
size).

LA / (512 x 511)
Q1

R1

Q1 = block of index table
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

Silberschatz, Galvin and Gagne 200212.22Operating System Concepts

Indexed Allocation – Mapping (Cont.)

� Two-level index (maximum file size is 5123)

LA / (512 x 512)
Q1

R1

Q1 = displacement into outer-index
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

Silberschatz, Galvin and Gagne 200212.23Operating System Concepts

Indexed Allocation – Mapping (Cont.)

�

outer-index

index table file

Silberschatz, Galvin and Gagne 200212.24Operating System Concepts

Combined Scheme: UNIX (4K bytes per block)

Silberschatz, Galvin and Gagne 200212.25Operating System Concepts

Free-Space Management

� Bit vector (n blocks)

…

0 1 2 n-1

bit[i] =

�
�

� 0 � block[i] free

1 � block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

Silberschatz, Galvin and Gagne 200212.26Operating System Concepts

Free-Space Management (Cont.)

� Bit map requires extra space. Example:
block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 = 218 bits (or 32K bytes)

� Easy to get contiguous files
� Linked list (free list)

✦ Cannot get contiguous space easily

✦ No waste of space

� Grouping
� Counting

Silberschatz, Galvin and Gagne 200212.27Operating System Concepts

Free-Space Management (Cont.)

� Need to protect:
✦ Pointer to free list
✦ Bit map

✔ Must be kept on disk

✔ Copy in memory and disk may differ.
✔ Cannot allow for block[i] to have a situation where bit[i] =

1 in memory and bit[i] = 0 on disk.
✦ Solution:

✔ Set bit[i] = 1 in disk.

✔ Allocate block[i]
✔ Set bit[i] = 1 in memory

Silberschatz, Galvin and Gagne 200212.28Operating System Concepts

Linked Free Space List on Disk

Silberschatz, Galvin and Gagne 200212.29Operating System Concepts

Efficiency and Performance

� Efficiency dependent on:
✦ disk allocation and directory algorithms

✦ types of data kept in file’s directory entry

� Performance
✦ disk cache – separate section of main memory for

frequently used blocks
✦ free-behind and read-ahead – techniques to optimize

sequential access
✦ improve PC performance by dedicating section of memory

as virtual disk, or RAM disk.

Silberschatz, Galvin and Gagne 200212.30Operating System Concepts

Various Disk-Caching Locations

Silberschatz, Galvin and Gagne 200212.31Operating System Concepts

Page Cache

� A page cache caches pages rather than disk blocks
using virtual memory techniques.

� Memory-mapped I/O uses a page cache.

� Routine I/O through the file system uses the buffer (disk)
cache.

� This leads to the following figure.

Silberschatz, Galvin and Gagne 200212.32Operating System Concepts

I/O Without a Unified Buffer Cache

Silberschatz, Galvin and Gagne 200212.33Operating System Concepts

Unified Buffer Cache

� A unified buffer cache uses the same page cache to
cache both memory-mapped pages and ordinary file
system I/O.

Silberschatz, Galvin and Gagne 200212.34Operating System Concepts

I/O Using a Unified Buffer Cache

Silberschatz, Galvin and Gagne 200212.35Operating System Concepts

Recovery

� Consistency checking – compares data in directory
structure with data blocks on disk, and tries to fix
inconsistencies.

� Use system programs to back up data from disk to
another storage device (floppy disk, magnetic tape).

� Recover lost file or disk by restoring data from backup.

Silberschatz, Galvin and Gagne 200212.36Operating System Concepts

Log Structured File Systems

� Log structured (or journaling) file systems record each
update to the file system as a transaction.

� All transactions are written to a log. A transaction is
considered committed once it is written to the log.
However, the file system may not yet be updated.

� The transactions in the log are asynchronously written to
the file system. When the file system is modified, the
transaction is removed from the log.

� If the file system crashes, all remaining transactions in the
log must still be performed.

Silberschatz, Galvin and Gagne 200212.37Operating System Concepts

The Sun Network File System (NFS)

� An implementation and a specification of a software
system for accessing remote files across LANs (or
WANs).

� The implementation is part of the Solaris and SunOS
operating systems running on Sun workstations using an
unreliable datagram protocol (UDP/IP protocol and
Ethernet.

Silberschatz, Galvin and Gagne 200212.38Operating System Concepts

NFS (Cont.)

� Interconnected workstations viewed as a set of
independent machines with independent file systems,
which allows sharing among these file systems in a
transparent manner.

✦ A remote directory is mounted over a local file system
directory. The mounted directory looks like an integral
subtree of the local file system, replacing the subtree
descending from the local directory.

✦ Specification of the remote directory for the mount operation
is nontransparent; the host name of the remote directory
has to be provided. Files in the remote directory can then
be accessed in a transparent manner.

✦ Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted
remotely on top of any local directory.

Silberschatz, Galvin and Gagne 200212.39Operating System Concepts

NFS (Cont.)

� NFS is designed to operate in a heterogeneous
environment of different machines, operating systems,
and network architectures; the NFS specifications
independent of these media.

� This independence is achieved through the use of RPC
primitives built on top of an External Data Representation
(XDR) protocol used between two implementation-
independent interfaces.

� The NFS specification distinguishes between the services
provided by a mount mechanism and the actual remote-
file-access services.

Silberschatz, Galvin and Gagne 200212.40Operating System Concepts

Three Independent File Systems

Silberschatz, Galvin and Gagne 200212.41Operating System Concepts

Mounting in NFS

Mounts Cascading mounts

Silberschatz, Galvin and Gagne 200212.42Operating System Concepts

NFS Mount Protocol

� Establishes initial logical connection between server and
client.

� Mount operation includes name of remote directory to be
mounted and name of server machine storing it.

✦ Mount request is mapped to corresponding RPC and forwarded
to mount server running on server machine.

✦ Export list – specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them.

� Following a mount request that conforms to its export list,
the server returns a file handle—a key for further accesses.

� File handle – a file-system identifier, and an inode number to
identify the mounted directory within the exported file
system.

� The mount operation changes only the user’s view and does
not affect the server side.

Silberschatz, Galvin and Gagne 200212.43Operating System Concepts

NFS Protocol

� Provides a set of remote procedure calls for remote file
operations. The procedures support the following operations:

✦ searching for a file within a directory

✦ reading a set of directory entries
✦ manipulating links and directories

✦ accessing file attributes

✦ reading and writing files

� NFS servers are stateless; each request has to provide a full set
of arguments.

� Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching).

� The NFS protocol does not provide concurrency-control
mechanisms.

Silberschatz, Galvin and Gagne 200212.44Operating System Concepts

Three Major Layers of NFS Architecture

� UNIX file-system interface (based on the open, read,
write, and close calls, and file descriptors).

� Virtual File System (VFS) layer – distinguishes local files
from remote ones, and local files are further distinguished
according to their file-system types.

✦ The VFS activates file-system-specific operations to handle
local requests according to their file-system types.

✦ Calls the NFS protocol procedures for remote requests.

� NFS service layer – bottom layer of the architecture;
implements the NFS protocol.

Silberschatz, Galvin and Gagne 200212.45Operating System Concepts

Schematic View of NFS Architecture

Silberschatz, Galvin and Gagne 200212.46Operating System Concepts

NFS Path-Name Translation

� Performed by breaking the path into component names
and performing a separate NFS lookup call for every pair
of component name and directory vnode.

� To make lookup faster, a directory name lookup cache on
the client’s side holds the vnodes for remote directory
names.

Silberschatz, Galvin and Gagne 200212.47Operating System Concepts

NFS Remote Operations

� Nearly one-to-one correspondence between regular UNIX
system calls and the NFS protocol RPCs (except opening and
closing files).

� NFS adheres to the remote-service paradigm, but employs
buffering and caching techniques for the sake of performance.

� File-blocks cache – when a file is opened, the kernel checks
with the remote server whether to fetch or revalidate the cached
attributes. Cached file blocks are used only if the corresponding
cached attributes are up to date.

� File-attribute cache – the attribute cache is updated whenever
new attributes arrive from the server.

� Clients do not free delayed-write blocks until the server confirms
that the data have been written to disk.

Silberschatz, Galvin and Gagne 200213.1Operating System Concepts

Chapter 13: I/O Systems

� I/O Hardware
� Application I/O Interface
� Kernel I/O Subsystem
� Transforming I/O Requests to Hardware Operations
� Streams
� Performance

Silberschatz, Galvin and Gagne 200213.2Operating System Concepts

I/O Hardware

� Incredible variety of I/O devices
� Common concepts

✦ Port
✦ Bus (daisy chain or shared direct access)

✦ Controller (host adapter)

� I/O instructions control devices
� Devices have addresses, used by

✦ Direct I/O instructions

✦ Memory-mapped I/O

Silberschatz, Galvin and Gagne 200213.3Operating System Concepts

A Typical PC Bus Structure

Silberschatz, Galvin and Gagne 200213.4Operating System Concepts

Device I/O Port Locations on PCs (partial)

Silberschatz, Galvin and Gagne 200213.5Operating System Concepts

Polling

� Determines state of device
✦ command-ready

✦ busy

✦ Error

� Busy-wait cycle to wait for I/O from device

Silberschatz, Galvin and Gagne 200213.6Operating System Concepts

Interrupts

� CPU Interrupt request line triggered by I/O device

� Interrupt handler receives interrupts

� Maskable to ignore or delay some interrupts

� Interrupt vector to dispatch interrupt to correct handler
✦ Based on priority

✦ Some unmaskable

� Interrupt mechanism also used for exceptions

Silberschatz, Galvin and Gagne 200213.7Operating System Concepts

Interrupt-Driven I/O Cycle

Silberschatz, Galvin and Gagne 200213.8Operating System Concepts

Intel Pentium Processor Event-Vector Table

Silberschatz, Galvin and Gagne 200213.9Operating System Concepts

Direct Memory Access

� Used to avoid programmed I/O for large data movement

� Requires DMA controller

� Bypasses CPU to transfer data directly between I/O
device and memory

Silberschatz, Galvin and Gagne 200213.10Operating System Concepts

Six Step Process to Perform DMA Transfer

Silberschatz, Galvin and Gagne 200213.11Operating System Concepts

Application I/O Interface

� I/O system calls encapsulate device behaviors in generic
classes

� Device-driver layer hides differences among I/O
controllers from kernel

� Devices vary in many dimensions
✦ Character-stream or block

✦ Sequential or random-access

✦ Sharable or dedicated
✦ Speed of operation

✦ read-write, read only, or write only

Silberschatz, Galvin and Gagne 200213.12Operating System Concepts

A Kernel I/O Structure

Silberschatz, Galvin and Gagne 200213.13Operating System Concepts

Characteristics of I/O Devices

Silberschatz, Galvin and Gagne 200213.14Operating System Concepts

Block and Character Devices

� Block devices include disk drives
✦ Commands include read, write, seek

✦ Raw I/O or file-system access
✦ Memory-mapped file access possible

� Character devices include keyboards, mice, serial ports
✦ Commands include get, put

✦ Libraries layered on top allow line editing

Silberschatz, Galvin and Gagne 200213.15Operating System Concepts

Network Devices

� Varying enough from block and character to have own
interface

� Unix and Windows NT/9i/2000 include socket interface
✦ Separates network protocol from network operation
✦ Includes select functionality

� Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes)

Silberschatz, Galvin and Gagne 200213.16Operating System Concepts

Clocks and Timers

� Provide current time, elapsed time, timer

� If programmable interval time used for timings, periodic
interrupts

� ioctl (on UNIX) covers odd aspects of I/O such as
clocks and timers

Silberschatz, Galvin and Gagne 200213.17Operating System Concepts

Blocking and Nonblocking I/O

� Blocking - process suspended until I/O completed
✦ Easy to use and understand

✦ Insufficient for some needs

� Nonblocking - I/O call returns as much as available
✦ User interface, data copy (buffered I/O)

✦ Implemented via multi-threading

✦ Returns quickly with count of bytes read or written

� Asynchronous - process runs while I/O executes
✦ Difficult to use

✦ I/O subsystem signals process when I/O completed

Silberschatz, Galvin and Gagne 200213.18Operating System Concepts

Kernel I/O Subsystem

� Scheduling
✦ Some I/O request ordering via per-device queue

✦ Some OSs try fairness

� Buffering - store data in memory while transferring
between devices

✦ To cope with device speed mismatch

✦ To cope with device transfer size mismatch

✦ To maintain “copy semantics”

Silberschatz, Galvin and Gagne 200213.19Operating System Concepts

Sun Enterprise 6000 Device-Transfer Rates

Silberschatz, Galvin and Gagne 200213.20Operating System Concepts

Kernel I/O Subsystem

� Caching - fast memory holding copy of data
✦ Always just a copy

✦ Key to performance

� Spooling - hold output for a device
✦ If device can serve only one request at a time

✦ i.e., Printing

� Device reservation - provides exclusive access to a
device

✦ System calls for allocation and deallocation

✦ Watch out for deadlock

Silberschatz, Galvin and Gagne 200213.21Operating System Concepts

Error Handling

� OS can recover from disk read, device unavailable,
transient write failures

� Most return an error number or code when I/O request
fails

� System error logs hold problem reports

Silberschatz, Galvin and Gagne 200213.22Operating System Concepts

Kernel Data Structures

� Kernel keeps state info for I/O components, including
open file tables, network connections, character device
state

� Many, many complex data structures to track buffers,
memory allocation, “dirty” blocks

� Some use object-oriented methods and message passing
to implement I/O

Silberschatz, Galvin and Gagne 200213.23Operating System Concepts

UNIX I/O Kernel Structure

Silberschatz, Galvin and Gagne 200213.24Operating System Concepts

I/O Requests to Hardware Operations

� Consider reading a file from disk for a process:

✦ Determine device holding file

✦ Translate name to device representation
✦ Physically read data from disk into buffer

✦ Make data available to requesting process

✦ Return control to process

Silberschatz, Galvin and Gagne 200213.25Operating System Concepts

Life Cycle of An I/O Request

Silberschatz, Galvin and Gagne 200213.26Operating System Concepts

STREAMS

� STREAM – a full-duplex communication channel between
a user-level process and a device

� A STREAM consists of:
- STREAM head interfaces with the user process
- driver end interfaces with the device
- zero or more STREAM modules between them.

� Each module contains a read queue and a write queue

� Message passing is used to communicate between
queues

Silberschatz, Galvin and Gagne 200213.27Operating System Concepts

The STREAMS Structure

Silberschatz, Galvin and Gagne 200213.28Operating System Concepts

Performance

� I/O a major factor in system performance:

✦ Demands CPU to execute device driver, kernel I/O code

✦ Context switches due to interrupts
✦ Data copying

✦ Network traffic especially stressful

Silberschatz, Galvin and Gagne 200213.29Operating System Concepts

Intercomputer Communications

Silberschatz, Galvin and Gagne 200213.30Operating System Concepts

Improving Performance

� Reduce number of context switches
� Reduce data copying
� Reduce interrupts by using large transfers, smart

controllers, polling
� Use DMA
� Balance CPU, memory, bus, and I/O performance for

highest throughput

Silberschatz, Galvin and Gagne 200213.31Operating System Concepts

Device-Functionality Progression

Silberschatz, Galvin and Gagne  200214.1Operating System Concepts

Chapter 14: Mass-Storage Systems

! Disk Structure
! Disk Scheduling
! Disk Management
! Swap-Space Management
! RAID Structure
! Disk Attachment
! Stable-Storage Implementation
! Tertiary Storage Devices
! Operating System Issues
! Performance Issues

Silberschatz, Galvin and Gagne  200214.2Operating System Concepts

Disk Structure

! Disk drives are addressed as large 1-dimensional arrays
of logical blocks, where the logical block is the smallest
unit of transfer.

! The 1-dimensional array of logical blocks is mapped into
the sectors of the disk sequentially.
" Sector 0 is the first sector of the first track on the outermost

cylinder.
" Mapping proceeds in order through that track, then the rest

of the tracks in that cylinder, and then through the rest of the
cylinders from outermost to innermost.

Silberschatz, Galvin and Gagne  200214.3Operating System Concepts

Disk Scheduling

! The operating system is responsible for using hardware
efficiently — for the disk drives, this means having a fast
access time and disk bandwidth.

! Access time has two major components
" Seek time is the time for the disk are to move the heads to

the cylinder containing the desired sector.
" Rotational latency is the additional time waiting for the disk

to rotate the desired sector to the disk head.
! Minimize seek time
! Seek time ≈ seek distance
! Disk bandwidth is the total number of bytes transferred,

divided by the total time between the first request for
service and the completion of the last transfer.

Silberschatz, Galvin and Gagne  200214.4Operating System Concepts

Disk Scheduling (Cont.)

! Several algorithms exist to schedule the servicing of disk
I/O requests.

! We illustrate them with a request queue (0-199).

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

Silberschatz, Galvin and Gagne  200214.5Operating System Concepts

FCFS

Illustration shows total head movement of 640 cylinders.

Silberschatz, Galvin and Gagne  200214.6Operating System Concepts

SSTF

! Selects the request with the minimum seek time from the
current head position.

! SSTF scheduling is a form of SJF scheduling; may cause
starvation of some requests.

! Illustration shows total head movement of 236 cylinders.

Silberschatz, Galvin and Gagne  200214.7Operating System Concepts

SSTF (Cont.)

Silberschatz, Galvin and Gagne  200214.8Operating System Concepts

SCAN

! The disk arm starts at one end of the disk, and moves
toward the other end, servicing requests until it gets to the
other end of the disk, where the head movement is
reversed and servicing continues.

! Sometimes called the elevator algorithm.
! Illustration shows total head movement of 208 cylinders.

Silberschatz, Galvin and Gagne  200214.9Operating System Concepts

SCAN (Cont.)

Silberschatz, Galvin and Gagne  200214.10Operating System Concepts

C-SCAN

! Provides a more uniform wait time than SCAN.
! The head moves from one end of the disk to the other.

servicing requests as it goes. When it reaches the other
end, however, it immediately returns to the beginning of
the disk, without servicing any requests on the return trip.

! Treats the cylinders as a circular list that wraps around
from the last cylinder to the first one.

Silberschatz, Galvin and Gagne  200214.11Operating System Concepts

C-SCAN (Cont.)

Silberschatz, Galvin and Gagne  200214.12Operating System Concepts

C-LOOK

! Version of C-SCAN
! Arm only goes as far as the last request in each direction,

then reverses direction immediately, without first going all
the way to the end of the disk.

Silberschatz, Galvin and Gagne  200214.13Operating System Concepts

C-LOOK (Cont.)

Silberschatz, Galvin and Gagne  200214.14Operating System Concepts

Selecting a Disk-Scheduling Algorithm

! SSTF is common and has a natural appeal
! SCAN and C-SCAN perform better for systems that place

a heavy load on the disk.
! Performance depends on the number and types of

requests.
! Requests for disk service can be influenced by the file-

allocation method.
! The disk-scheduling algorithm should be written as a

separate module of the operating system, allowing it to be
replaced with a different algorithm if necessary.

! Either SSTF or LOOK is a reasonable choice for the
default algorithm.

Silberschatz, Galvin and Gagne  200214.15Operating System Concepts

Disk Management

! Low-level formatting, or physical formatting — Dividing a
disk into sectors that the disk controller can read and
write.

! To use a disk to hold files, the operating system still
needs to record its own data structures on the disk.
" Partition the disk into one or more groups of cylinders.
" Logical formatting or “making a file system”.

! Boot block initializes system.
" The bootstrap is stored in ROM.
" Bootstrap loader program.

! Methods such as sector sparing used to handle bad
blocks.

Silberschatz, Galvin and Gagne  200214.16Operating System Concepts

MS-DOS Disk Layout

Silberschatz, Galvin and Gagne  200214.17Operating System Concepts

Swap-Space Management

! Swap-space — Virtual memory uses disk space as an
extension of main memory.

! Swap-space can be carved out of the normal file
system,or, more commonly, it can be in a separate disk
partition.

! Swap-space management
" 4.3BSD allocates swap space when process starts; holds

text segment (the program) and data segment.
" Kernel uses swap maps to track swap-space use.
" Solaris 2 allocates swap space only when a page is forced

out of physical memory, not when the virtual memory page
is first created.

Silberschatz, Galvin and Gagne  200214.18Operating System Concepts

4.3 BSD Text-Segment Swap Map

Silberschatz, Galvin and Gagne  200214.19Operating System Concepts

4.3 BSD Data-Segment Swap Map

Silberschatz, Galvin and Gagne  200214.20Operating System Concepts

RAID Structure

! RAID – multiple disk drives provides reliability via
redundancy.

! RAID is arranged into six different levels.

Silberschatz, Galvin and Gagne  200214.21Operating System Concepts

RAID (cont)

! Several improvements in disk-use techniques involve the
use of multiple disks working cooperatively.

! Disk striping uses a group of disks as one storage unit.

! RAID schemes improve performance and improve the
reliability of the storage system by storing redundant data.
" Mirroring or shadowing keeps duplicate of each disk.
" Block interleaved parity uses much less redundancy.

Silberschatz, Galvin and Gagne  200214.22Operating System Concepts

RAID Levels

Silberschatz, Galvin and Gagne  200214.23Operating System Concepts

RAID (0 + 1) and (1 + 0)

Silberschatz, Galvin and Gagne  200214.24Operating System Concepts

Disk Attachment

! Disks may be attached one of two ways:

1. Host attached via an I/O port

2. Network attached via a network connection

Silberschatz, Galvin and Gagne  200214.25Operating System Concepts

Network-Attached Storage

Silberschatz, Galvin and Gagne  200214.26Operating System Concepts

Storage-Area Network

Silberschatz, Galvin and Gagne  200214.27Operating System Concepts

Stable-Storage Implementation

! Write-ahead log scheme requires stable storage.

! To implement stable storage:
" Replicate information on more than one nonvolatile storage

media with independent failure modes.
" Update information in a controlled manner to ensure that we

can recover the stable data after any failure during data
transfer or recovery.

Silberschatz, Galvin and Gagne  200214.28Operating System Concepts

Tertiary Storage Devices

! Low cost is the defining characteristic of tertiary storage.

! Generally, tertiary storage is built using removable media

! Common examples of removable media are floppy disks
and CD-ROMs; other types are available.

Silberschatz, Galvin and Gagne  200214.29Operating System Concepts

Removable Disks

! Floppy disk — thin flexible disk coated with magnetic
material, enclosed in a protective plastic case.

" Most floppies hold about 1 MB; similar technology is used
for removable disks that hold more than 1 GB.

" Removable magnetic disks can be nearly as fast as hard
disks, but they are at a greater risk of damage from
exposure.

Silberschatz, Galvin and Gagne  200214.30Operating System Concepts

Removable Disks (Cont.)

! A magneto-optic disk records data on a rigid platter
coated with magnetic material.
" Laser heat is used to amplify a large, weak magnetic field to

record a bit.
" Laser light is also used to read data (Kerr effect).
" The magneto-optic head flies much farther from the disk

surface than a magnetic disk head, and the magnetic
material is covered with a protective layer of plastic or glass;
resistant to head crashes.

! Optical disks do not use magnetism; they employ special
materials that are altered by laser light.

Silberschatz, Galvin and Gagne  200214.31Operating System Concepts

WORM Disks

! The data on read-write disks can be modified over and
over.

! WORM (“Write Once, Read Many Times”) disks can be
written only once.

! Thin aluminum film sandwiched between two glass or
plastic platters.

! To write a bit, the drive uses a laser light to burn a small
hole through the aluminum; information can be destroyed
by not altered.

! Very durable and reliable.
! Read Only disks, such ad CD-ROM and DVD, com from

the factory with the data pre-recorded.

Silberschatz, Galvin and Gagne  200214.32Operating System Concepts

Tapes

! Compared to a disk, a tape is less expensive and holds
more data, but random access is much slower.

! Tape is an economical medium for purposes that do not
require fast random access, e.g., backup copies of disk
data, holding huge volumes of data.

! Large tape installations typically use robotic tape
changers that move tapes between tape drives and
storage slots in a tape library.
" stacker – library that holds a few tapes
" silo – library that holds thousands of tapes

! A disk-resident file can be archived to tape for low cost
storage; the computer can stage it back into disk storage
for active use.

Silberschatz, Galvin and Gagne  200214.33Operating System Concepts

Operating System Issues

! Major OS jobs are to manage physical devices and to
present a virtual machine abstraction to applications

! For hard disks, the OS provides two abstraction:
" Raw device – an array of data blocks.
" File system – the OS queues and schedules the interleaved

requests from several applications.

Silberschatz, Galvin and Gagne  200214.34Operating System Concepts

Application Interface

! Most OSs handle removable disks almost exactly like
fixed disks — a new cartridge is formatted and an empty
file system is generated on the disk.

! Tapes are presented as a raw storage medium, i.e., and
application does not not open a file on the tape, it opens
the whole tape drive as a raw device.

! Usually the tape drive is reserved for the exclusive use of
that application.

! Since the OS does not provide file system services, the
application must decide how to use the array of blocks.

! Since every application makes up its own rules for how to
organize a tape, a tape full of data can generally only be
used by the program that created it.

Silberschatz, Galvin and Gagne  200214.35Operating System Concepts

Tape Drives

! The basic operations for a tape drive differ from those of
a disk drive.

! locate positions the tape to a specific logical block, not an
entire track (corresponds to seek).

! The read position operation returns the logical block
number where the tape head is.

! The space operation enables relative motion.
! Tape drives are “append-only” devices; updating a block

in the middle of the tape also effectively erases
everything beyond that block.

! An EOT mark is placed after a block that is written.

Silberschatz, Galvin and Gagne  200214.36Operating System Concepts

File Naming

! The issue of naming files on removable media is
especially difficult when we want to write data on a
removable cartridge on one computer, and then use the
cartridge in another computer.

! Contemporary OSs generally leave the name space
problem unsolved for removable media, and depend on
applications and users to figure out how to access and
interpret the data.

! Some kinds of removable media (e.g., CDs) are so well
standardized that all computers use them the same way.

Silberschatz, Galvin and Gagne  200214.37Operating System Concepts

Hierarchical Storage Management (HSM)

! A hierarchical storage system extends the storage
hierarchy beyond primary memory and secondary storage
to incorporate tertiary storage — usually implemented as
a jukebox of tapes or removable disks.

! Usually incorporate tertiary storage by extending the file
system.
" Small and frequently used files remain on disk.
" Large, old, inactive files are archived to the jukebox.

! HSM is usually found in supercomputing centers and
other large installations that have enormous volumes of
data.

Silberschatz, Galvin and Gagne  200214.38Operating System Concepts

Speed

! Two aspects of speed in tertiary storage are bandwidth
and latency.

! Bandwidth is measured in bytes per second.
" Sustained bandwidth – average data rate during a large

transfer; # of bytes/transfer time.
Data rate when the data stream is actually flowing.

" Effective bandwidth – average over the entire I/O time,
including seek or locate, and cartridge switching.
Drive’s overall data rate.

Silberschatz, Galvin and Gagne  200214.39Operating System Concepts

Speed (Cont.)

! Access latency – amount of time needed to locate
data.
" Access time for a disk – move the arm to the selected

cylinder and wait for the rotational latency; < 35
milliseconds.

" Access on tape requires winding the tape reels until the
selected block reaches the tape head; tens or hundreds
of seconds.

" Generally say that random access within a tape cartridge
is about a thousand times slower than random access on
disk.

! The low cost of tertiary storage is a result of having
many cheap cartridges share a few expensive drives.

! A removable library is best devoted to the storage of
infrequently used data, because the library can only
satisfy a relatively small number of I/O requests per
hour.

Silberschatz, Galvin and Gagne  200214.40Operating System Concepts

Reliability

! A fixed disk drive is likely to be more reliable than a
removable disk or tape drive.

! An optical cartridge is likely to be more reliable than a
magnetic disk or tape.

! A head crash in a fixed hard disk generally destroys the
data, whereas the failure of a tape drive or optical disk
drive often leaves the data cartridge unharmed.

Silberschatz, Galvin and Gagne  200214.41Operating System Concepts

Cost

! Main memory is much more expensive than disk storage

! The cost per megabyte of hard disk storage is competitive
with magnetic tape if only one tape is used per drive.

! The cheapest tape drives and the cheapest disk drives
have had about the same storage capacity over the
years.

! Tertiary storage gives a cost savings only when the
number of cartridges is considerably larger than the
number of drives.

Silberschatz, Galvin and Gagne  200214.42Operating System Concepts

Price per Megabyte of DRAM, From 1981 to 2000

Silberschatz, Galvin and Gagne  200214.43Operating System Concepts

Price per Megabyte of Magnetic Hard Disk, From 1981 to 2000

Silberschatz, Galvin and Gagne  200214.44Operating System Concepts

Price per Megabyte of a Tape Drive, From 1984-2000

Silberschatz, Galvin and Gagne 200215.1Operating System Concepts

Module 15: Network Structures

� Background
� Topology
� Network Types
� Communication
� Communication Protocol
� Robustness
� Design Strategies

Silberschatz, Galvin and Gagne 200215.2Operating System Concepts

A Distributed System

Silberschatz, Galvin and Gagne 200215.3Operating System Concepts

Motivation

� Resource sharing
✦ sharing and printing files at remote sites

✦ processing information in a distributed database

✦ using remote specialized hardware devices

� Computation speedup – load sharing
� Reliability – detect and recover from site failure, function

transfer, reintegrate failed site
� Communication – message passing

Silberschatz, Galvin and Gagne 200215.4Operating System Concepts

Network-Operating Systems

� Users are aware of multiplicity of machines. Access to
resources of various machines is done explicitly by:

✦ Remote logging into the appropriate remote machine.

✦ Transferring data from remote machines to local machines,
via the File Transfer Protocol (FTP) mechanism.

Silberschatz, Galvin and Gagne 200215.5Operating System Concepts

Distributed-Operating Systems

� Users not aware of multiplicity of machines. Access to
remote resources similar to access to local resources.

� Data Migration – transfer data by transferring entire file,
or transferring only those portions of the file necessary for
the immediate task.

� Computation Migration – transfer the computation, rather
than the data, across the system.

Silberschatz, Galvin and Gagne 200215.6Operating System Concepts

Distributed-Operating Systems (Cont.)

� Process Migration – execute an entire process, or parts of
it, at different sites.

✦ Load balancing – distribute processes across network to
even the workload.

✦ Computation speedup – subprocesses can run concurrently
on different sites.

✦ Hardware preference – process execution may require
specialized processor.

✦ Software preference – required software may be available
at only a particular site.

✦ Data access – run process remotely, rather than transfer all
data locally.

Silberschatz, Galvin and Gagne 200215.7Operating System Concepts

Topology

� Sites in the system can be physically connected in a
variety of ways; they are compared with respect to the
following criteria:

✦ Basic cost. How expensive is it to link the various sites in
the system?

✦ Communication cost. How long does it take to send a
message from site A to site B?

✦ Reliability. If a link or a site in the system fails, can the
remaining sites still communicate with each other?

� The various topologies are depicted as graphs whose
nodes correspond to sites. An edge from node A to node
B corresponds to a direct connection between the two
sites.

� The following six items depict various network topologies.

Silberschatz, Galvin and Gagne 200215.8Operating System Concepts

Network Topology

Silberschatz, Galvin and Gagne 200215.9Operating System Concepts

Network Types

� Local-Area Network (LAN) – designed to cover small
geographical area.

✦ Multiaccess bus, ring, or star network.

✦ Speed ≈ 10 megabits/second, or higher.
✦ Broadcast is fast and cheap.
✦ Nodes:

✔ usually workstations and/or personal computers

✔ a few (usually one or two) mainframes.

Silberschatz, Galvin and Gagne 200215.10Operating System Concepts

Network Types (Cont.)

� Depiction of typical LAN:

Silberschatz, Galvin and Gagne 200215.11Operating System Concepts

Network Types (Cont.)

� Wide-Area Network (WAN) – links geographically
separated sites.

✦ Point-to-point connections over long-haul lines (often leased
from a phone company).

✦ Speed ≈ 100 kilobits/second.
✦ Broadcast usually requires multiple messages.

✦ Nodes:
✔ usually a high percentage of mainframes

Silberschatz, Galvin and Gagne 200215.12Operating System Concepts

Communication Processors in a Wide-Area Network

Silberschatz, Galvin and Gagne 200215.13Operating System Concepts

Communication

� Naming and name resolution: How do two processes
locate each other to communicate?

� Routing strategies. How are messages sent through
the network?

� Connection strategies. How do two processes send a
sequence of messages?

� Contention. The network is a shared resource, so how
do we resolve conflicting demands for its use?

The design of a communication network must address four basic
issues:

Silberschatz, Galvin and Gagne 200215.14Operating System Concepts

Naming and Name Resolution

� Name systems in the network
� Address messages with the process-id.
� Identify processes on remote systems by

<host-name, identifier> pair.

� Domain name service (DNS) – specifies the naming
structure of the hosts, as well as name to address
resolution (Internet).

Silberschatz, Galvin and Gagne 200215.15Operating System Concepts

Routing Strategies

� Fixed routing. A path from A to B is specified in
advance; path changes only if a hardware failure disables
it.

✦ Since the shortest path is usually chosen, communication
costs are minimized.

✦ Fixed routing cannot adapt to load changes.

✦ Ensures that messages will be delivered in the order in
which they were sent.

� Virtual circuit. A path from A to B is fixed for the
duration of one session. Different sessions involving
messages from A to B may have different paths.

✦ Partial remedy to adapting to load changes.

✦ Ensures that messages will be delivered in the order in
which they were sent.

Silberschatz, Galvin and Gagne 200215.16Operating System Concepts

Routing Strategies (Cont.)

� Dynamic routing. The path used to send a message
form site A to site B is chosen only when a message is
sent.

✦ Usually a site sends a message to another site on the link
least used at that particular time.

✦ Adapts to load changes by avoiding routing messages on
heavily used path.

✦ Messages may arrive out of order. This problem can be
remedied by appending a sequence number to each
message.

Silberschatz, Galvin and Gagne 200215.17Operating System Concepts

Connection Strategies

� Circuit switching. A permanent physical link is
established for the duration of the communication (i.e.,
telephone system).

� Message switching. A temporary link is established for
the duration of one message transfer (i.e., post-office
mailing system).

� Packet switching. Messages of variable length are
divided into fixed-length packets which are sent to the
destination. Each packet may take a different path
through the network. The packets must be reassembled
into messages as they arrive.

� Circuit switching requires setup time, but incurs less
overhead for shipping each message, and may waste
network bandwidth. Message and packet switching
require less setup time, but incur more overhead per
message.

Silberschatz, Galvin and Gagne 200215.18Operating System Concepts

Contention

� CSMA/CD. Carrier sense with multiple access (CSMA);
collision detection (CD)

✦ A site determines whether another message is currently
being transmitted over that link. If two or more sites begin
transmitting at exactly the same time, then they will register
a CD and will stop transmitting.

✦ When the system is very busy, many collisions may occur,
and thus performance may be degraded.

� SCMA/CD is used successfully in the Ethernet system,
the most common network system.

Several sites may want to transmit information over a link
simultaneously. Techniques to avoid repeated collisions include:

Silberschatz, Galvin and Gagne 200215.19Operating System Concepts

Contention (Cont.)

� Token passing. A unique message type, known as a
token, continuously circulates in the system (usually a
ring structure). A site that wants to transmit information
must wait until the token arrives. When the site
completes its round of message passing, it retransmits
the token. A token-passing scheme is used by the IBM
and Apollo systems.

� Message slots. A number of fixed-length message slots
continuously circulate in the system (usually a ring
structure). Since a slot can contain only fixed-sized
messages, a single logical message may have to be
broken down into a number of smaller packets, each of
which is sent in a separate slot. This scheme has been
adopted in the experimental Cambridge Digital
Communication Ring

Silberschatz, Galvin and Gagne 200215.20Operating System Concepts

Communication Protocol

� Physical layer – handles the mechanical and electrical
details of the physical transmission of a bit stream.

� Data-link layer – handles the frames, or fixed-length parts
of packets, including any error detection and recovery
that occurred in the physical layer.

� Network layer – provides connections and routes packets
in the communication network, including handling the
address of outgoing packets, decoding the address of
incoming packets, and maintaining routing information for
proper response to changing load levels.

The communication network is partitioned into the following
multiple layers;

Silberschatz, Galvin and Gagne 200215.21Operating System Concepts

Communication Protocol (Cont.)

� Transport layer – responsible for low-level network
access and for message transfer between clients,
including partitioning messages into packets, maintaining
packet order, controlling flow, and generating physical
addresses.

� Session layer – implements sessions, or process-to-
process communications protocols.

� Presentation layer – resolves the differences in formats
among the various sites in the network, including
character conversions, and half duplex/full duplex
(echoing).

� Application layer – interacts directly with the users’ deals
with file transfer, remote-login protocols and electronic
mail, as well as schemas for distributed databases.

Silberschatz, Galvin and Gagne 200215.22Operating System Concepts

Communication Via ISO Network Model

Silberschatz, Galvin and Gagne 200215.23Operating System Concepts

The ISO Protocol Layer

Silberschatz, Galvin and Gagne 200215.24Operating System Concepts

The ISO Network Message

Silberschatz, Galvin and Gagne 200215.25Operating System Concepts

The TCP/IP Protocol Layers

Silberschatz, Galvin and Gagne 200215.26Operating System Concepts

Robustness

� Failure detection

� Reconfiguration

Silberschatz, Galvin and Gagne 200215.27Operating System Concepts

Failure Detection

� Detecting hardware failure is difficult.
� To detect a link failure, a handshaking protocol can be

used.
� Assume Site A and Site B have established a link. At

fixed intervals, each site will exchange an I-am-up
message indicating that they are up and running.

� If Site A does not receive a message within the fixed
interval, it assumes either (a) the other site is not up or (b)
the message was lost.

� Site A can now send an Are-you-up? message to Site B.
� If Site A does not receive a reply, it can repeat the

message or try an alternate route to Site B.

Silberschatz, Galvin and Gagne 200215.28Operating System Concepts

Failure Detection (cont)

� If Site A does not ultimately receive a reply from Site B, it
concludes some type of failure has occurred.

� Types of failures:
- Site B is down
- The direct link between A and B is down
- The alternate link from A to B is down
- The message has been lost

� However, Site A cannot determine exactly why the failure
has occurred.

Silberschatz, Galvin and Gagne 200215.29Operating System Concepts

Reconfiguration

� When Site A determines a failure has occurred, it must
reconfigure the system:

1. If the link from A to B has failed, this must be broadcast
to every site in the system.

2. If a site has failed, every other site must also be
notified indicating that the services offered by the failed
site are no longer available.

� When the link or the site becomes available again, this
information must again be broadcast to all other sites.

Silberschatz, Galvin and Gagne 200215.30Operating System Concepts

Design Issues

� Transparency – the distributed system should appear as
a conventional, centralized system to the user.

� Fault tolerance – the distributed system should continue
to function in the face of failure.

� Scalability – as demands increase, the system should
easily accept the addition of new resources to
accommodate the increased demand.

� Clusters – a collection of semi-autonomous machines
that acts as a single system.

Silberschatz, Galvin and Gagne 200215.31Operating System Concepts

Networking Example

� The transmission of a network packet between hosts on
an Ethernet network.

� Every host has a unique IP address and a corresponding
Ethernet (MAC) address.

� Communication requires both addresses.
� Domain Name Service (DNS) can be used to acquire IP

addresses.
� Address Resolution Protocol (ARP) is used to map MAC

addresses to IP addresses.
� If the hosts are on the same network, ARP can be used. If

the hosts are on different networks, the sending host will
send the packet to a router which routes the packet to the
destination network.

Silberschatz, Galvin and Gagne 200215.32Operating System Concepts

An Ethernet Packet

Silberschatz, Galvin and Gagne 200216.1Operating System Concepts

Chapter 16 Distributed-File Systems

� Background
� Naming and Transparency
� Remote File Access
� Stateful versus Stateless Service
� File Replication
� Example Systems

Silberschatz, Galvin and Gagne 200216.2Operating System Concepts

Background

� Distributed file system (DFS) – a distributed
implementation of the classical time-sharing model of a
file system, where multiple users share files and storage
resources.

� A DFS manages set of dispersed storage devices

� Overall storage space managed by a DFS is composed of
different, remotely located, smaller storage spaces.

� There is usually a correspondence between constituent
storage spaces and sets of files.

Silberschatz, Galvin and Gagne 200216.3Operating System Concepts

DFS Structure

� Service – software entity running on one or more machines and
providing a particular type of function to a priori unknown clients.

� Server – service software running on a single machine.

� Client – process that can invoke a service using a set of
operations that forms its client interface.

� A client interface for a file service is formed by a set of primitive
file operations (create, delete, read, write).

� Client interface of a DFS should be transparent, i.e., not
distinguish between local and remote files.

Silberschatz, Galvin and Gagne 200216.4Operating System Concepts

Naming and Transparency

� Naming – mapping between logical and physical objects.

� Multilevel mapping – abstraction of a file that hides the
details of how and where on the disk the file is actually
stored.

� A transparent DFS hides the location where in the
network the file is stored.

� For a file being replicated in several sites, the mapping
returns a set of the locations of this file’s replicas; both
the existence of multiple copies and their location are
hidden.

Silberschatz, Galvin and Gagne 200216.5Operating System Concepts

Naming Structures

� Location transparency – file name does not reveal the file’s
physical storage location.

✦ File name still denotes a specific, although hidden, set of physical
disk blocks.

✦ Convenient way to share data.

✦ Can expose correspondence between component units and
machines.

� Location independence – file name does not need to be
changed when the file’s physical storage location changes.

✦ Better file abstraction.

✦ Promotes sharing the storage space itself.
✦ Separates the naming hierarchy form the storage-devices

hierarchy.

Silberschatz, Galvin and Gagne 200216.6Operating System Concepts

Naming Schemes — Three Main Approaches

� Files named by combination of their host name and local
name; guarantees a unique systemwide name.

� Attach remote directories to local directories, giving the
appearance of a coherent directory tree; only previously
mounted remote directories can be accessed
transparently.

� Total integration of the component file systems.
✦ A single global name structure spans all the files in the

system.
✦ If a server is unavailable, some arbitrary set of directories

on different machines also becomes unavailable.

Silberschatz, Galvin and Gagne 200216.7Operating System Concepts

Remote File Access

� Reduce network traffic by retaining recently accessed
disk blocks in a cache, so that repeated accesses to the
same information can be handled locally.

✦ If needed data not already cached, a copy of data is brought
from the server to the user.

✦ Accesses are performed on the cached copy.

✦ Files identified with one master copy residing at the server
machine, but copies of (parts of) the file are scattered in
different caches.

✦ Cache-consistency problem – keeping the cached copies
consistent with the master file.

Silberschatz, Galvin and Gagne 200216.8Operating System Concepts

Cache Location – Disk vs. Main Memory

� Advantages of disk caches
✦ More reliable.
✦ Cached data kept on disk are still there during recovery and

don’t need to be fetched again.

� Advantages of main-memory caches:
✦ Permit workstations to be diskless.
✦ Data can be accessed more quickly.
✦ Performance speedup in bigger memories.
✦ Server caches (used to speed up disk I/O) are in main

memory regardless of where user caches are located; using
main-memory caches on the user machine permits a single
caching mechanism for servers and users.

Silberschatz, Galvin and Gagne 200216.9Operating System Concepts

Cache Update Policy

� Write-through – write data through to disk as soon as they are
placed on any cache. Reliable, but poor performance.

� Delayed-write – modifications written to the cache and then
written through to the server later. Write accesses complete
quickly; some data may be overwritten before they are written
back, and so need never be written at all.

✦ Poor reliability; unwritten data will be lost whenever a user machine
crashes.

✦ Variation – scan cache at regular intervals and flush blocks that
have been modified since the last scan.

✦ Variation – write-on-close, writes data back to the server when the
file is closed. Best for files that are open for long periods and
frequently modified.

Silberschatz, Galvin and Gagne 200216.10Operating System Concepts

Consistency

� Is locally cached copy of the data consistent with the
master copy?

� Client-initiated approach
✦ Client initiates a validity check.
✦ Server checks whether the local data are consistent with the

master copy.

� Server-initiated approach
✦ Server records, for each client, the (parts of) files it caches.

✦ When server detects a potential inconsistency, it must react.

Silberschatz, Galvin and Gagne 200216.11Operating System Concepts

Comparing Caching and Remote Service

� In caching, many remote accesses handled efficiently by
the local cache; most remote accesses will be served as
fast as local ones.

� Servers are contracted only occasionally in caching
(rather than for each access).

✦ Reduces server load and network traffic.
✦ Enhances potential for scalability.

� Remote server method handles every remote access
across the network; penalty in network traffic, server load,
and performance.

� Total network overhead in transmitting big chunks of data
(caching) is lower than a series of responses to specific
requests (remote-service).

Silberschatz, Galvin and Gagne 200216.12Operating System Concepts

Caching and Remote Service (Cont.)

� Caching is superior in access patterns with infrequent
writes. With frequent writes, substantial overhead
incurred to overcome cache-consistency problem.

� Benefit from caching when execution carried out on
machines with either local disks or large main memories.

� Remote access on diskless, small-memory-capacity
machines should be done through remote-service
method.

� In caching, the lower intermachine interface is different
form the upper user interface.

� In remote-service, the intermachine interface mirrors the
local user-file-system interface.

Silberschatz, Galvin and Gagne 200216.13Operating System Concepts

Stateful File Service

� Mechanism.
✦ Client opens a file.
✦ Server fetches information about the file from its disk, stores

it in its memory, and gives the client a connection identifier
unique to the client and the open file.

✦ Identifier is used for subsequent accesses until the session
ends.

✦ Server must reclaim the main-memory space used by
clients who are no longer active.

� Increased performance.
✦ Fewer disk accesses.
✦ Stateful server knows if a file was opened for sequential

access and can thus read ahead the next blocks.

Silberschatz, Galvin and Gagne 200216.14Operating System Concepts

Stateless File Server

� Avoids state information by making each request self-
contained.

� Each request identifies the file and position in the file.

� No need to establish and terminate a connection by open
and close operations.

Silberschatz, Galvin and Gagne 200216.15Operating System Concepts

Distinctions Between Stateful & Stateless Service

� Failure Recovery.
✦ A stateful server loses all its volatile state in a crash.

✔ Restore state by recovery protocol based on a dialog
with clients, or abort operations that were underway
when the crash occurred.

✔ Server needs to be aware of client failures in order to
reclaim space allocated to record the state of crashed
client processes (orphan detection and elimination).

✦ With stateless server, the effects of server failure sand
recovery are almost unnoticeable. A newly reincarnated
server can respond to a self-contained request without any
difficulty.

Silberschatz, Galvin and Gagne 200216.16Operating System Concepts

Distinctions (Cont.)

� Penalties for using the robust stateless service:
✦ longer request messages

✦ slower request processing
✦ additional constraints imposed on DFS design

� Some environments require stateful service.
✦ A server employing server-initiated cache validation cannot

provide stateless service, since it maintains a record of
which files are cached by which clients.

✦ UNIX use of file descriptors and implicit offsets is inherently
stateful; servers must maintain tables to map the file
descriptors to inodes, and store the current offset within a
file.

Silberschatz, Galvin and Gagne 200216.17Operating System Concepts

File Replication

� Replicas of the same file reside on failure-independent
machines.

� Improves availability and can shorten service time.
� Naming scheme maps a replicated file name to a

particular replica.
✦ Existence of replicas should be invisible to higher levels.

✦ Replicas must be distinguished from one another by
different lower-level names.

� Updates – replicas of a file denote the same logical entity,
and thus an update to any replica must be reflected on all
other replicas.

� Demand replication – reading a nonlocal replica causes it
to be cached locally, thereby generating a new
nonprimary replica.

Silberschatz, Galvin and Gagne 200216.18Operating System Concepts

Example System - ANDREW

� A distributed computing environment under development
since 1983 at Carnegie-Mellon University.

� Andrew is highly scalable; the system is targeted to span
over 5000 workstations.

� Andrew distinguishes between client machines
(workstations) and dedicated server machines. Servers
and clients run the 4.2BSD UNIX OS and are
interconnected by an internet of LANs.

Silberschatz, Galvin and Gagne 200216.19Operating System Concepts

ANDREW (Cont.)

� Clients are presented with a partitioned space of file
names: a local name space and a shared name space.

� Dedicated servers, called Vice, present the shared name
space to the clients as an homogeneous, identical, and
location transparent file hierarchy.

� The local name space is the root file system of a
workstation, from which the shared name space
descends.

� Workstations run the Virtue protocol to communicate with
Vice, and are required to have local disks where they
store their local name space.

� Servers collectively are responsible for the storage and
management of the shared name space.

Silberschatz, Galvin and Gagne 200216.20Operating System Concepts

ANDREW (Cont.)

� Clients and servers are structured in clusters
interconnected by a backbone LAN.

� A cluster consists of a collection of workstations and a
cluster server and is connected to the backbone by a
router.

� A key mechanism selected for remote file operations is
whole file caching. Opening a file causes it to be cached,
in its entirety, on the local disk.

Silberschatz, Galvin and Gagne 200216.21Operating System Concepts

ANDREW Shared Name Space

� Andrew’s volumes are small component units associated
with the files of a single client.

� A fid identifies a Vice file or directory. A fid is 96 bits long
and has three equal-length components:

✦ volume number
✦ vnode number – index into an array containing the inodes of

files in a single volume.
✦ uniquifier – allows reuse of vnode numbers, thereby keeping

certain data structures, compact.

� Fids are location transparent; therefore, file movements
from server to server do not invalidate cached directory
contents.

� Location information is kept on a volume basis, and the
information is replicated on each server.

Silberschatz, Galvin and Gagne 200216.22Operating System Concepts

ANDREW File Operations

� Andrew caches entire files form servers. A client
workstation interacts with Vice servers only during
opening and closing of files.

� Venus – caches files from Vice when they are opened,
and stores modified copies of files back when they are
closed.

� Reading and writing bytes of a file are done by the kernel
without Venus intervention on the cached copy.

� Venus caches contents of directories and symbolic links,
for path-name translation.

� Exceptions to the caching policy are modifications to
directories that are made directly on the server
responsibility for that directory.

Silberschatz, Galvin and Gagne 200216.23Operating System Concepts

ANDREW Implementation

� Client processes are interfaced to a UNIX kernel with the
usual set of system calls.

� Venus carries out path-name translation component by
component.

� The UNIX file system is used as a low-level storage
system for both servers and clients. The client cache is a
local directory on the workstation’s disk.

� Both Venus and server processes access UNIX files
directly by their inodes to avoid the expensive path name-
to-inode translation routine.

Silberschatz, Galvin and Gagne 200216.24Operating System Concepts

ANDREW Implementation (Cont.)

� Venus manages two separate caches:
✦ one for status

✦ one for data

� LRU algorithm used to keep each of them bounded in
size.

� The status cache is kept in virtual memory to allow rapid
servicing of stat (file status returning) system calls.

� The data cache is resident on the local disk, but the UNIX
I/O buffering mechanism does some caching of the disk
blocks in memory that are transparent to Venus.

Silberschatz, Galvin and Gagne 200217.1Operating System Concepts

Chapter 17 Distributed Coordination

� Event Ordering
� Mutual Exclusion
� Atomicity
� Concurrency Control
� Deadlock Handling
� Election Algorithms
� Reaching Agreement

Silberschatz, Galvin and Gagne 200217.2Operating System Concepts

Event Ordering

� Happened-before relation (denoted by →).
✦ If A and B are events in the same process, and A was

executed before B, then A → B.
✦ If A is the event of sending a message by one process and

B is the event of receiving that message by another
process, then A → B.

✦ If A → B and B → C then A → C.

Silberschatz, Galvin and Gagne 200217.3Operating System Concepts

Relative Time for Three Concurrent Processes

Silberschatz, Galvin and Gagne 200217.4Operating System Concepts

Implementation of →→→→

� Associate a timestamp with each system event. Require
that for every pair of events A and B, if A → B, then the
timestamp of A is less than the timestamp of B.

� Within each process Pi a logical clock, LCi is associated.
The logical clock can be implemented as a simple
counter that is incremented between any two successive
events executed within a process.

� A process advances its logical clock when it receives a
message whose timestamp is greater than the current
value of its logical clock.

� If the timestamps of two events A and B are the same,
then the events are concurrent. We may use the process
identity numbers to break ties and to create a total
ordering.

Silberschatz, Galvin and Gagne 200217.5Operating System Concepts

Distributed Mutual Exclusion (DME)

� Assumptions
✦ The system consists of n processes; each process Pi

resides at a different processor.
✦ Each process has a critical section that requires mutual

exclusion.

� Requirement
✦ If Pi is executing in its critical section, then no other process

Pj is executing in its critical section.

� We present two algorithms to ensure the mutual
exclusion execution of processes in their critical sections.

Silberschatz, Galvin and Gagne 200217.6Operating System Concepts

DME: Centralized Approach
� One of the processes in the system is chosen to

coordinate the entry to the critical section.
� A process that wants to enter its critical section sends a

request message to the coordinator.
� The coordinator decides which process can enter the

critical section next, and its sends that process a reply
message.

� When the process receives a reply message from the
coordinator, it enters its critical section.

� After exiting its critical section, the process sends a
release message to the coordinator and proceeds with its
execution.

� This scheme requires three messages per critical-section
entry:

✦ request

✦ reply

✦ release

Silberschatz, Galvin and Gagne 200217.7Operating System Concepts

DME: Fully Distributed Approach

� When process Pi wants to enter its critical section, it
generates a new timestamp, TS, and sends the message
request (Pi, TS) to all other processes in the system.

� When process Pj receives a request message, it may
reply immediately or it may defer sending a reply back.

� When process Pi receives a reply message from all other
processes in the system, it can enter its critical section.

� After exiting its critical section, the process sends reply
messages to all its deferred requests.

Silberschatz, Galvin and Gagne 200217.8Operating System Concepts

DME: Fully Distributed Approach (Cont.)

� The decision whether process Pj replies immediately to a
request(Pi, TS) message or defers its reply is based on
three factors:

✦ If Pj is in its critical section, then it defers its reply to Pi.
✦ If Pj does not want to enter its critical section, then it sends

a reply immediately to Pi.

✦ If Pj wants to enter its critical section but has not yet entered
it, then it compares its own request timestamp with the
timestamp TS.

✔ If its own request timestamp is greater than TS, then it
sends a reply immediately to Pi (Pi asked first).

✔ Otherwise, the reply is deferred.

Silberschatz, Galvin and Gagne 200217.9Operating System Concepts

Desirable Behavior of Fully Distributed Approach

� Freedom from Deadlock is ensured.
� Freedom from starvation is ensured, since entry to the

critical section is scheduled according to the timestamp
ordering. The timestamp ordering ensures that
processes are served in a first-come, first served order.

� The number of messages per critical-section entry is

2 x (n – 1).

This is the minimum number of required messages per
critical-section entry when processes act independently
and concurrently.

Silberschatz, Galvin and Gagne 200217.10Operating System Concepts

Three Undesirable Consequences

� The processes need to know the identity of all other
processes in the system, which makes the dynamic
addition and removal of processes more complex.

� If one of the processes fails, then the entire scheme
collapses. This can be dealt with by continuously
monitoring the state of all the processes in the system.

� Processes that have not entered their critical section must
pause frequently to assure other processes that they
intend to enter the critical section. This protocol is
therefore suited for small, stable sets of cooperating
processes.

Silberschatz, Galvin and Gagne 200217.11Operating System Concepts

Atomicity

� Either all the operations associated with a program unit
are executed to completion, or none are performed.

� Ensuring atomicity in a distributed system requires a
transaction coordinator, which is responsible for the
following:

✦ Starting the execution of the transaction.

✦ Breaking the transaction into a number of subtransactions,
and distribution these subtransactions to the appropriate
sites for execution.

✦ Coordinating the termination of the transaction, which may
result in the transaction being committed at all sites or
aborted at all sites.

Silberschatz, Galvin and Gagne 200217.12Operating System Concepts

Two-Phase Commit Protocol (2PC)

� Assumes fail-stop model.

� Execution of the protocol is initiated by the coordinator
after the last step of the transaction has been reached.

� When the protocol is initiated, the transaction may still be
executing at some of the local sites.

� The protocol involves all the local sites at which the
transaction executed.

� Example: Let T be a transaction initiated at site Si and let
the transaction coordinator at Si be Ci.

Silberschatz, Galvin and Gagne 200217.13Operating System Concepts

Phase 1: Obtaining a Decision

� Ci adds <prepare T> record to the log.
� Ci sends <prepare T> message to all sites.
� When a site receives a <prepare T> message, the

transaction manager determines if it can commit the
transaction.

✦ If no: add <no T> record to the log and respond to Ci with
<abort T>.

✦ If yes:
✔ add <ready T> record to the log.

✔ force all log records for T onto stable storage.

✔ transaction manager sends <ready T> message to Ci.

Silberschatz, Galvin and Gagne 200217.14Operating System Concepts

Phase 1 (Cont.)

� Coordinator collects responses
✦ All respond “ready”,

decision is commit.
✦ At least one response is “abort”,

decision is abort.
✦ At least one participant fails to respond within time out

period,
decision is abort.

Silberschatz, Galvin and Gagne 200217.15Operating System Concepts

Phase 2: Recording Decision in the Database

� Coordinator adds a decision record
<abort T> or <commit T>

to its log and forces record onto stable storage.
� Once that record reaches stable storage it is irrevocable

(even if failures occur).
� Coordinator sends a message to each participant

informing it of the decision (commit or abort).
� Participants take appropriate action locally.

Silberschatz, Galvin and Gagne 200217.16Operating System Concepts

Failure Handling in 2PC – Site Failure

� The log contains a <commit T> record. In this case, the
site executes redo(T).

� The log contains an <abort T> record. In this case, the
site executes undo(T).

� The contains a <ready T> record; consult Ci. If Ci is
down, site sends query-status T message to the other
sites.

� The log contains no control records concerning T. In this
case, the site executes undo(T).

Silberschatz, Galvin and Gagne 200217.17Operating System Concepts

Failure Handling in 2PC – Coordinator Ci Failure

� If an active site contains a <commit T> record in its log,
the T must be committed.

� If an active site contains an <abort T> record in its log,
then T must be aborted.

� If some active site does not contain the record <ready T>
in its log then the failed coordinator Ci cannot have
decided to
commit T. Rather than wait for Ci to recover, it is
preferable to abort T.

� All active sites have a <ready T> record in their logs, but
no additional control records. In this case we must wait
for the coordinator to recover.

✦ Blocking problem – T is blocked pending the recovery of
site Si.

Silberschatz, Galvin and Gagne 200217.18Operating System Concepts

Concurrency Control

� Modify the centralized concurrency schemes to
accommodate the distribution of transactions.

� Transaction manager coordinates execution of
transactions (or subtransactions) that access data at local
sites.

� Local transaction only executes at that site.

� Global transaction executes at several sites.

Silberschatz, Galvin and Gagne 200217.19Operating System Concepts

Locking Protocols

� Can use the two-phase locking protocol in a distributed
environment by changing how the lock manager is
implemented.

� Nonreplicated scheme – each site maintains a local lock
manager which administers lock and unlock requests for
those data items that are stored in that site.

✦ Simple implementation involves two message transfers for
handling lock requests, and one message transfer for
handling unlock requests.

✦ Deadlock handling is more complex.

Silberschatz, Galvin and Gagne 200217.20Operating System Concepts

Single-Coordinator Approach

� A single lock manager resides in a single chosen site, all lock
and unlock requests are made a that site.

� Simple implementation

� Simple deadlock handling

� Possibility of bottleneck

� Vulnerable to loss of concurrency controller if single site fails

� Multiple-coordinator approach distributes lock-manager function
over several sites.

Silberschatz, Galvin and Gagne 200217.21Operating System Concepts

Majority Protocol

� Avoids drawbacks of central control by dealing with
replicated data in a decentralized manner.

� More complicated to implement

� Deadlock-handling algorithms must be modified; possible
for deadlock to occur in locking only one data item.

Silberschatz, Galvin and Gagne 200217.22Operating System Concepts

Biased Protocol

� Similar to majority protocol, but requests for shared locks
prioritized over requests for exclusive locks.

� Less overhead on read operations than in majority
protocol; but has additional overhead on writes.

� Like majority protocol, deadlock handling is complex.

Silberschatz, Galvin and Gagne 200217.23Operating System Concepts

Primary Copy

� One of the sites at which a replica resides is designated
as the primary site. Request to lock a data item is made
at the primary site of that data item.

� Concurrency control for replicated data handled in a
manner similar to that of unreplicated data.

� Simple implementation, but if primary site fails, the data
item is unavailable, even though other sites may have a
replica.

Silberschatz, Galvin and Gagne 200217.24Operating System Concepts

Timestamping

� Generate unique timestamps in distributed scheme:
✦ Each site generates a unique local timestamp.
✦ The global unique timestamp is obtained by concatenation

of the unique local timestamp with the unique site identifier

✦ Use a logical clock defined within each site to ensure the
fair generation of timestamps.

� Timestamp-ordering scheme – combine the centralized
concurrency control timestamp scheme with the 2PC
protocol to obtain a protocol that ensures serializability
with no cascading rollbacks.

Silberschatz, Galvin and Gagne 200217.25Operating System Concepts

Generation of Unique Timestamps

Silberschatz, Galvin and Gagne 200217.26Operating System Concepts

Deadlock Prevention

� Resource-ordering deadlock-prevention – define a global
ordering among the system resources.

✦ Assign a unique number to all system resources.
✦ A process may request a resource with unique number i

only if it is not holding a resource with a unique number
grater than i.

✦ Simple to implement; requires little overhead.

� Banker’s algorithm – designate one of the processes in
the system as the process that maintains the information
necessary to carry out the Banker’s algorithm.

✦ Also implemented easily, but may require too much
overhead.

Silberschatz, Galvin and Gagne 200217.27Operating System Concepts

Timestamped Deadlock-Prevention Scheme

� Each process Pi is assigned a unique priority number

� Priority numbers are used to decide whether a process Pi

should wait for a process Pj; otherwise Pi is rolled back.

� The scheme prevents deadlocks. For every edge Pi → Pj
in the wait-for graph, Pi has a higher priority than Pj. Thus
a cycle cannot exist.

Silberschatz, Galvin and Gagne 200217.28Operating System Concepts

Wait-Die Scheme

� Based on a nonpreemptive technique.

� If Pi requests a resource currently held by Pj, Pi is
allowed to wait only if it has a smaller timestamp than
does Pj (Pi is older than Pj). Otherwise, Pi is rolled back
(dies).

� Example: Suppose that processes P1, P2, and P3 have
timestamps t, 10, and 15 respectively.

✦ if P1 request a resource held by P2, then P1 will wait.
✦ If P3 requests a resource held by P2, then P3 will be rolled

back.

Silberschatz, Galvin and Gagne 200217.29Operating System Concepts

Would-Wait Scheme

� Based on a preemptive technique; counterpart to the
wait-die system.

� If Pi requests a resource currently held by Pj, Pi is allowed
to wait only if it has a larger timestamp than does Pj (Pi is
younger than Pj). Otherwise Pj is rolled back (Pj is
wounded by Pi).

� Example: Suppose that processes P1, P2, and P3 have
timestamps 5, 10, and 15 respectively.

✦ If P1 requests a resource held by P2, then the resource will
be preempted from P2 and P2 will be rolled back.

✦ If P3 requests a resource held by P2, then P3 will wait.

Silberschatz, Galvin and Gagne 200217.30Operating System Concepts

Two Local Wait-For Graphs

Silberschatz, Galvin and Gagne 200217.31Operating System Concepts

Global Wait-For Graph

Silberschatz, Galvin and Gagne 200217.32Operating System Concepts

Deadlock Detection – Centralized Approach

� Each site keeps a local wait-for graph. The nodes of the
graph correspond to all the processes that are currently
either holding or requesting any of the resources local to
that site.

� A global wait-for graph is maintained in a single
coordination process; this graph is the union of all local
wait-for graphs.

� There are three different options (points in time) when the
wait-for graph may be constructed:
1. Whenever a new edge is inserted or removed in one of the

local wait-for graphs.

2. Periodically, when a number of changes have occurred in a
wait-for graph.

3. Whenever the coordinator needs to invoke the cycle-
detection algorithm..

� Unnecessary rollbacks may occur as a result of false
cycles.

Silberschatz, Galvin and Gagne 200217.33Operating System Concepts

Detection Algorithm Based on Option 3

� Append unique identifiers (timestamps) to requests form
different sites.

� When process Pi, at site A, requests a resource from
process Pj, at site B, a request message with timestamp
TS is sent.

� The edge Pi → Pj with the label TS is inserted in the local
wait-for of A. The edge is inserted in the local wait-for
graph of B only if B has received the request message
and cannot immediately grant the requested resource.

Silberschatz, Galvin and Gagne 200217.34Operating System Concepts

The Algorithm

1. The controller sends an initiating message to each site in
the system.

2. On receiving this message, a site sends its local wait-for
graph to the coordinator.

3. When the controller has received a reply from each site, it
constructs a graph as follows:
(a) The constructed graph contains a vertex for every process

in the system.

(b) The graph has an edge Pi → Pj if and only if (1) there is an
edge Pi → Pj in one of the wait-for graphs, or (2) an edge
Pi → Pj with some label TS appears in more than one
wait-for graph.

If the constructed graph contains a cycle � deadlock.

Silberschatz, Galvin and Gagne 200217.35Operating System Concepts

Local and Global Wait-For Graphs

Silberschatz, Galvin and Gagne 200217.36Operating System Concepts

Fully Distributed Approach

� All controllers share equally the responsibility for
detecting deadlock.

� Every site constructs a wait-for graph that represents a
part of the total graph.

� We add one additional node Pex to each local wait-for
graph.

� If a local wait-for graph contains a cycle that does not
involve node Pex, then the system is in a deadlock state.

� A cycle involving Pex implies the possibility of a deadlock.
To ascertain whether a deadlock does exist, a distributed
deadlock-detection algorithm must be invoked.

Silberschatz, Galvin and Gagne 200217.37Operating System Concepts

Augmented Local Wait-For Graphs

Silberschatz, Galvin and Gagne 200217.38Operating System Concepts

Augmented Local Wait-For Graph in Site S2

Silberschatz, Galvin and Gagne 200217.39Operating System Concepts

Election Algorithms

� Determine where a new copy of the coordinator should be
restarted.

� Assume that a unique priority number is associated with
each active process in the system, and assume that the
priority number of process Pi is i.

� Assume a one-to-one correspondence between
processes and sites.

� The coordinator is always the process with the largest
priority number. When a coordinator fails, the algorithm
must elect that active process with the largest priority
number.

� Two algorithms, the bully algorithm and a ring algorithm,
can be used to elect a new coordinator in case of failures.

Silberschatz, Galvin and Gagne 200217.40Operating System Concepts

Bully Algorithm

� Applicable to systems where every process can send a
message to every other process in the system.

� If process Pi sends a request that is not answered by the
coordinator within a time interval T, assume that the
coordinator has failed; Pi tries to elect itself as the new
coordinator.

� Pi sends an election message to every process with a
higher priority number, Pi then waits for any of these
processes to answer within T.

Silberschatz, Galvin and Gagne 200217.41Operating System Concepts

Bully Algorithm (Cont.)

� If no response within T, assume that all processes with
numbers greater than i have failed; Pi elects itself the new
coordinator.

� If answer is received, Pi begins time interval T´, waiting to
receive a message that a process with a higher priority
number has been elected.

� If no message is sent within T´, assume the process with
a higher number has failed; Pi should restart the algorithm

Silberschatz, Galvin and Gagne 200217.42Operating System Concepts

Bully Algorithm (Cont.)

� If Pi is not the coordinator, then, at any time during execution, Pi
may receive one of the following two messages from process Pj.

✦ Pj is the new coordinator (j > i). Pi, in turn, records this information.

✦ Pj started an election (j > i). Pi, sends a response to Pj and begins
its own election algorithm, provided that Pi has not already initiated
such an election.

� After a failed process recovers, it immediately begins execution
of the same algorithm.

� If there are no active processes with higher numbers, the
recovered process forces all processes with lower number to let
it become the coordinator process, even if there is a currently
active coordinator with a lower number.

Silberschatz, Galvin and Gagne 200217.43Operating System Concepts

Ring Algorithm

� Applicable to systems organized as a ring (logically or
physically).

� Assumes that the links are unidirectional, and that processes
send their messages to their right neighbors.

� Each process maintains an active list, consisting of all the
priority numbers of all active processes in the system when
the algorithm ends.

� If process Pi detects a coordinator failure, I creates a new
active list that is initially empty. It then sends a message
elect(i) to its right neighbor, and adds the number i to its active
list.

Silberschatz, Galvin and Gagne 200217.44Operating System Concepts

Ring Algorithm (Cont.)

� If Pi receives a message elect(j) from the process on the
left, it must respond in one of three ways:

1. If this is the first elect message it has seen or sent, Pi
creates a new active list with the numbers i and j. It then
sends the message elect(i), followed by the message
elect(j).

✦ If i ≠ j, then the active list for Pi now contains the numbers
of all the active processes in the system. Pi can now
determine the largest number in the active list to identify the
new coordinator process.

✦ If i = j, then Pi receives the message elect(i). The active list
for Pi contains all the active processes in the system. Pi can
now determine the new coordinator process.

Silberschatz, Galvin and Gagne 200217.45Operating System Concepts

Reaching Agreement

� There are applications where a set of processes wish to
agree on a common “value”.

� Such agreement may not take place due to:
✦ Faulty communication medium

✦ Faulty processes
✔ Processes may send garbled or incorrect messages to

other processes.
✔ A subset of the processes may collaborate with each

other in an attempt to defeat the scheme.

Silberschatz, Galvin and Gagne 200217.46Operating System Concepts

Faulty Communications

� Process Pi at site A, has sent a message to process Pj at
site B; to proceed, Pi needs to know if Pj has received the
message.

� Detect failures using a time-out scheme.
✦ When Pi sends out a message, it also specifies a time

interval during which it is willing to wait for an
acknowledgment message form Pj.

✦ When Pj receives the message, it immediately sends an
acknowledgment to Pi.

✦ If Pi receives the acknowledgment message within the
specified time interval, it concludes that Pj has received its
message. If a time-out occurs, Pj needs to retransmit its
message and wait for an acknowledgment.

✦ Continue until Pi either receives an acknowledgment, or is
notified by the system that B is down.

Silberschatz, Galvin and Gagne 200217.47Operating System Concepts

Faulty Communications (Cont.)

� Suppose that Pj also needs to know that Pi has received
its acknowledgment message, in order to decide on how
to proceed.

✦ In the presence of failure, it is not possible to accomplish
this task.

✦ It is not possible in a distributed environment for processes
Pi and Pj to agree completely on their respective states.

Silberschatz, Galvin and Gagne 200217.48Operating System Concepts

Faulty Processes (Byzantine Generals Problem)

� Communication medium is reliable, but processes can
fail in unpredictable ways.

� Consider a system of n processes, of which no more
than m are faulty. Suppose that each process Pi has
some private value of Vi.

� Devise an algorithm that allows each nonfaulty Pi to
construct a vector Xi = (Ai,1, Ai,2, …, Ai,n) such that::

✦ If Pj is a nonfaulty process, then Aij = Vj.

✦ If Pi and Pj are both nonfaulty processes, then Xi = Xj.

� Solutions share the following properties.
✦ A correct algorithm can be devised only if n ≥ 3 x m + 1.
✦ The worst-case delay for reaching agreement is

proportionate to m + 1 message-passing delays.

Silberschatz, Galvin and Gagne 200217.49Operating System Concepts

Faulty Processes (Cont.)

� An algorithm for the case where m = 1 and n = 4 requires
two rounds of information exchange:

✦ Each process sends its private value to the other 3
processes.

✦ Each process sends the information it has obtained in the
first round to all other processes.

� If a faulty process refuses to send messages, a nonfaulty
process can choose an arbitrary value and pretend that
that value was sent by that process.

� After the two rounds are completed, a nonfaulty process
Pi can construct its vector Xi = (Ai,1, Ai,2, Ai,3, Ai,4) as
follows:

✦ Ai,j = Vi.

✦ For j ≠ i, if at least two of the three values reported for
process Pj agree, then the majority value is used to set the
value of Aij. Otherwise, a default value (nil) is used.

Silberschatz, Galvin and Gagne 200218.1Operating System Concepts

Module 18: Protection

� Goals of Protection
� Domain of Protection
� Access Matrix
� Implementation of Access Matrix
� Revocation of Access Rights
� Capability-Based Systems
� Language-Based Protection

Silberschatz, Galvin and Gagne 200218.2Operating System Concepts

Protection

� Operating system consists of a collection of objects,
hardware or software

� Each object has a unique name and can be accessed
through a well-defined set of operations.

� Protection problem - ensure that each object is accessed
correctly and only by those processes that are allowed to
do so.

Silberschatz, Galvin and Gagne 200218.3Operating System Concepts

Domain Structure

� Access-right = <object-name, rights-set>
where rights-set is a subset of all valid operations that
can be performed on the object.

� Domain = set of access-rights

Silberschatz, Galvin and Gagne 200218.4Operating System Concepts

Domain Implementation (UNIX)

� System consists of 2 domains:
✦ User

✦ Supervisor

� UNIX
✦ Domain = user-id

✦ Domain switch accomplished via file system.

✔ Each file has associated with it a domain bit (setuid bit).
✔ When file is executed and setuid = on, then user-id is

set to owner of the file being executed. When execution
completes user-id is reset.

Silberschatz, Galvin and Gagne 200218.5Operating System Concepts

Domain Implementation (Multics)

� Let Di and Dj be any two domain rings.

� If j < I � Di ⊆ Dj

Multics Rings

Silberschatz, Galvin and Gagne 200218.6Operating System Concepts

Access Matrix

� View protection as a matrix (access matrix)

� Rows represent domains

� Columns represent objects

� Access(i, j) is the set of operations that a process
executing in Domaini can invoke on Objectj

Silberschatz, Galvin and Gagne 200218.7Operating System Concepts

Access Matrix

Figure A

Silberschatz, Galvin and Gagne 200218.8Operating System Concepts

Use of Access Matrix

� If a process in Domain Di tries to do “op” on object Oj,
then “op” must be in the access matrix.

� Can be expanded to dynamic protection.
✦ Operations to add, delete access rights.
✦ Special access rights:

✔ owner of Oi

✔ copy op from Oi to Oj

✔ control – Di can modify Dj access rights

✔ transfer – switch from domain Di to Dj

Silberschatz, Galvin and Gagne 200218.9Operating System Concepts

Use of Access Matrix (Cont.)

� Access matrix design separates mechanism from policy.
✦ Mechanism

✔ Operating system provides access-matrix + rules.

✔ If ensures that the matrix is only manipulated by
authorized agents and that rules are strictly enforced.

✦ Policy

✔ User dictates policy.

✔ Who can access what object and in what mode.

Silberschatz, Galvin and Gagne 200218.10Operating System Concepts

Implementation of Access Matrix

� Each column = Access-control list for one object
Defines who can perform what operation.

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

 �
� Each Row = Capability List (like a key)

Fore each domain, what operations allowed on what
objects.

Object 1 – Read
Object 4 – Read, Write, Execute

Object 5 – Read, Write, Delete, Copy

Silberschatz, Galvin and Gagne 200218.11Operating System Concepts

Access Matrix of Figure A With Domains as Objects

Figure B

Silberschatz, Galvin and Gagne 200218.12Operating System Concepts

Access Matrix with Copy Rights

Silberschatz, Galvin and Gagne 200218.13Operating System Concepts

Access Matrix With Owner Rights

Silberschatz, Galvin and Gagne 200218.14Operating System Concepts

Modified Access Matrix of Figure B

Silberschatz, Galvin and Gagne 200218.15Operating System Concepts

Revocation of Access Rights

� Access List – Delete access rights from access list.
✦ Simple

✦ Immediate

� Capability List – Scheme required to locate capability in
the system before capability can be revoked.

✦ Reacquisition

✦ Back-pointers

✦ Indirection
✦ Keys

Silberschatz, Galvin and Gagne 200218.16Operating System Concepts

Capability-Based Systems

� Hydra
✦ Fixed set of access rights known to and interpreted by the

system.

✦ Interpretation of user-defined rights performed solely by
user's program; system provides access protection for use
of these rights.

� Cambridge CAP System
✦ Data capability - provides standard read, write, execute of

individual storage segments associated with object.

✦ Software capability -interpretation left to the subsystem,
through its protected procedures.

Silberschatz, Galvin and Gagne 200218.17Operating System Concepts

Language-Based Protection

� Specification of protection in a programming language
allows the high-level description of policies for the
allocation and use of resources.

� Language implementation can provide software for
protection enforcement when automatic hardware-
supported checking is unavailable.

� Interpret protection specifications to generate calls on
whatever protection system is provided by the hardware
and the operating system.

Silberschatz, Galvin and Gagne 200218.18Operating System Concepts

Protection in Java 2

� Protection is handled by the Java Virtual Machine (JVM)

� A class is assigned a protection domain when it is loaded
by the JVM.

� The protection domain indicates what operations the
class can (and cannot) perform.

� If a library method is invoked that performs a privileged
operation, the stack is inspected to ensure the operation
can be performed by the library.

Silberschatz, Galvin and Gagne 200218.19Operating System Concepts

Stack Inspection

Silberschatz, Galvin and Gagne 200219.1Operating System Concepts

Module 19: Security

� The Security Problem
� Authentication
� Program Threats
� System Threats
� Securing Systems
� Intrusion Detection
� Encryption
� Windows NT

Silberschatz, Galvin and Gagne 200219.2Operating System Concepts

The Security Problem

� Security must consider external environment of the
system, and protect it from:

✦ unauthorized access.

✦ malicious modification or destruction

✦ accidental introduction of inconsistency.

� Easier to protect against accidental than malicious
misuse.

Silberschatz, Galvin and Gagne 200219.3Operating System Concepts

Authentication

� User identity most often established through passwords,
can be considered a special case of either keys or
capabilities.

� Passwords must be kept secret.
✦ Frequent change of passwords.

✦ Use of “non-guessable” passwords.
✦ Log all invalid access attempts.

� Passwords may also either be encrypted or allowed to be
used only once.

Silberschatz, Galvin and Gagne 200219.4Operating System Concepts

Program Threats

� Trojan Horse
✦ Code segment that misuses its environment.
✦ Exploits mechanisms for allowing programs written by users

to be executed by other users.

� Trap Door
✦ Specific user identifier or password that circumvents normal

security procedures.
✦ Could be included in a compiler.

� Stack and Buffer Overflow
✦ Exploits a bug in a program (overflow either the stack or

memory buffers.)

Silberschatz, Galvin and Gagne 200219.5Operating System Concepts

System Threats

� Worms – use spawn mechanism; standalone program

� Internet worm
✦ Exploited UNIX networking features (remote access) and bugs in

finger and sendmail programs.

✦ Grappling hook program uploaded main worm program.

� Viruses – fragment of code embedded in a legitimate program.
✦ Mainly effect microcomputer systems.

✦ Downloading viral programs from public bulletin boards or
exchanging floppy disks containing an infection.

✦ Safe computing.

� Denial of Service
✦ Overload the targeted computer preventing it from doing any sueful

work.

Silberschatz, Galvin and Gagne 200219.6Operating System Concepts

The Morris Internet Worm

Silberschatz, Galvin and Gagne 200219.7Operating System Concepts

Threat Monitoring

� Check for suspicious patterns of activity – i.e., several
incorrect password attempts may signal password
guessing.

� Audit log – records the time, user, and type of all
accesses to an object; useful for recovery from a violation
and developing better security measures.

� Scan the system periodically for security holes; done
when the computer is relatively unused.

Silberschatz, Galvin and Gagne 200219.8Operating System Concepts

Threat Monitoring (Cont.)

� Check for:
✦ Short or easy-to-guess passwords

✦ Unauthorized set-uid programs

✦ Unauthorized programs in system directories
✦ Unexpected long-running processes

✦ Improper directory protections

✦ Improper protections on system data files
✦ Dangerous entries in the program search path (Trojan

horse)
✦ Changes to system programs: monitor checksum values

Silberschatz, Galvin and Gagne 200219.9Operating System Concepts

FireWall

� A firewall is placed between trusted and untrusted hosts.

� The firewall limits network access between these two
security domains.

Silberschatz, Galvin and Gagne 200219.10Operating System Concepts

Network Security Through Domain Separation Via Firewall

Silberschatz, Galvin and Gagne 200219.11Operating System Concepts

Intrusion Detection

� Detect attempts to intrude into computer systems.

� Detection methods:
✦ Auditing and logging.

✦ Tripwire (UNIX software that checks if certain files and
directories have been altered – I.e. password files)

� System call monitoring

Silberschatz, Galvin and Gagne 200219.12Operating System Concepts

Data Structure Derived From System-Call Sequence

Silberschatz, Galvin and Gagne 200219.13Operating System Concepts

Encryption

� Encrypt clear text into cipher text.
� Properties of good encryption technique:

✦ Relatively simple for authorized users to incrypt and decrypt
data.

✦ Encryption scheme depends not on the secrecy of the
algorithm but on a parameter of the algorithm called the
encryption key.

✦ Extremely difficult for an intruder to determine the
encryption key.

� Data Encryption Standard substitutes characters and
rearranges their order on the basis of an encryption key
provided to authorized users via a secure mechanism.
Scheme only as secure as the mechanism.

Silberschatz, Galvin and Gagne 200219.14Operating System Concepts

Encryption (Cont.)

� Public-key encryption based on each user having two
keys:

✦ public key – published key used to encrypt data.

✦ private key – key known only to individual user used to
decrypt data.

� Must be an encryption scheme that can be made public
without making it easy to figure out the decryption
scheme.

✦ Efficient algorithm for testing whether or not a number is
prime.

✦ No efficient algorithm is know for finding the prime factors of
a number.

Silberschatz, Galvin and Gagne 200219.15Operating System Concepts

Encryption Example - SSL

� SSL – Secure Socket Layer

� Cryptographic protocol that limits two computers to only
exchange messages with each other.

� Used between web servers and browsers for secure
communication (credit card numbers)

� The server is verified with a certificate.

� Communication between each computers uses symmetric
key cryptography.

Silberschatz, Galvin and Gagne 200219.16Operating System Concepts

Computer Security Classifications

� U.S. Department of Defense outlines four divisions of
computer security: A, B, C, and D.

� D – Minimal security.
� C – Provides discretionary protection through auditing.

Divided into C1 and C2. C1 identifies cooperating users
with the same level of protection. C2 allows user-level
access control.

� B – All the properties of C, however each object may
have unique sensitivity labels. Divided into B1, B2, and
B3.

� A – Uses formal design and verification techniques to
ensure security.

Silberschatz, Galvin and Gagne 200219.17Operating System Concepts

Windows NT Example

� Configurable security allows policies ranging from D to C2.

� Security is based on user accounts where each user has a
security ID.

� Uses a subject model to ensure access security. A subject
tracks and manages permissions for each program that a user
runs.

� Each object in Windows NT has a security attribute defined by a
security descriptor. For example, a file has a security descriptor
that indicates the access permissions for all users.

Silberschatz, Galvin and Gagne 200220.1Operating System Concepts

Module 20: The Linux System

� History
� Design Principles
� Kernel Modules
� Process Management
� Scheduling
� Memory Management
� File Systems
� Input and Output
� Interprocess Communication
� Network Structure
� Security

Silberschatz, Galvin and Gagne 200220.2Operating System Concepts

History

� Linux is a modem, free operating system based on UNIX
standards.

� First developed as a small but self-contained kernel in
1991 by Linus Torvalds, with the major design goal of
UNIX compatibility.

� Its history has been one of collaboration by many users
from all around the world, corresponding almost
exclusively over the Internet.

� It has been designed to run efficiently and reliably on
common PC hardware, but also runs on a variety of other
platforms.

� The core Linux operating system kernel is entirely
original, but it can run much existing free UNIX software,
resulting in an entire UNIX-compatible operating system
free from proprietary code.

Silberschatz, Galvin and Gagne 200220.3Operating System Concepts

The Linux Kernel

� Version 0.01 (May 1991) had no networking, ran only on
80386-compatible Intel processors and on PC hardware,
had extremely limited device-drive support, and
supported only the Minix file system.

� Linux 1.0 (March 1994) included these new features:
✦ Support for UNIX’s standard TCP/IP networking protocols

✦ BSD-compatible socket interface for networking
programming

✦ Device-driver support for running IP over an Ethernet

✦ Enhanced file system
✦ Support for a range of SCSI controllers for

high-performance disk access
✦ Extra hardware support

� Version 1.2 (March 1995) was the final PC-only Linux
kernel.

Silberschatz, Galvin and Gagne 200220.4Operating System Concepts

Linux 2.0

� Released in June 1996, 2.0 added two major new
capabilities:

✦ Support for multiple architectures, including a fully 64-bit
native Alpha port.

✦ Support for multiprocessor architectures

� Other new features included:
✦ Improved memory-management code

✦ Improved TCP/IP performance
✦ Support for internal kernel threads, for handling

dependencies between loadable modules, and for automatic
loading of modules on demand.

✦ Standardized configuration interface

� Available for Motorola 68000-series processors, Sun
Sparc systems, and for PC and PowerMac systems.

Silberschatz, Galvin and Gagne 200220.5Operating System Concepts

The Linux System

� Linux uses many tools developed as part of Berkeley’s
BSD operating system, MIT’s X Window System, and the
Free Software Foundation's GNU project.

� The min system libraries were started by the GNU
project, with improvements provided by the Linux
community.

� Linux networking-administration tools were derived from
4.3BSD code; recent BSD derivatives such as Free BSD
have borrowed code from Linux in return.

� The Linux system is maintained by a loose network of
developers collaborating over the Internet, with a small
number of public ftp sites acting as de facto standard
repositories.

Silberschatz, Galvin and Gagne 200220.6Operating System Concepts

Linux Distributions

� Standard, precompiled sets of packages, or distributions,
include the basic Linux system, system installation and
management utilities, and ready-to-install packages of
common UNIX tools.

� The first distributions managed these packages by simply
providing a means of unpacking all the files into the
appropriate places; modern distributions include
advanced package management.

� Early distributions included SLS and Slackware. Red Hat
and Debian are popular distributions from commercial
and noncommercial sources, respectively.

� The RPM Package file format permits compatibility
among the various Linux distributions.

Silberschatz, Galvin and Gagne 200220.7Operating System Concepts

Linux Licensing

� The Linux kernel is distributed under the GNU General
Public License (GPL), the terms of which are set out by
the Free Software Foundation.

� Anyone using Linux, or creating their own derivative of
Linux, may not make the derived product proprietary;
software released under the GPL may not be
redistributed as a binary-only product.

Silberschatz, Galvin and Gagne 200220.8Operating System Concepts

Design Principles

� Linux is a multiuser, multitasking system with a full set of
UNIX-compatible tools..

� Its file system adheres to traditional UNIX semantics, and
it fully implements the standard UNIX networking model.

� Main design goals are speed, efficiency, and
standardization.

� Linux is designed to be compliant with the relevant
POSIX documents; at least two Linux distributions have
achieved official POSIX certification.

� The Linux programming interface adheres to the SVR4
UNIX semantics, rather than to BSD behavior.

Silberschatz, Galvin and Gagne 200220.9Operating System Concepts

Components of a Linux System

Silberschatz, Galvin and Gagne 200220.10Operating System Concepts

Components of a Linux System (Cont.)

� Like most UNIX implementations, Linux is composed of
three main bodies of code; the most important distinction
between the kernel and all other components.

� The kernel is responsible for maintaining the important
abstractions of the operating system.

✦ Kernel code executes in kernel mode with full access to all
the physical resources of the computer.

✦ All kernel code and data structures are kept in the same
single address space.

Silberschatz, Galvin and Gagne 200220.11Operating System Concepts

Components of a Linux System (Cont.)

� The system libraries define a standard set of functions
through which applications interact with the kernel, and
which implement much of the operating-system
functionality that does not need the full privileges of
kernel code.

� The system utilities perform individual specialized
management tasks.

Silberschatz, Galvin and Gagne 200220.12Operating System Concepts

Kernel Modules

� Sections of kernel code that can be compiled, loaded, and
unloaded independent of the rest of the kernel.

� A kernel module may typically implement a device driver, a
file system, or a networking protocol.

� The module interface allows third parties to write and
distribute, on their own terms, device drivers or file
systems that could not be distributed under the GPL.

� Kernel modules allow a Linux system to be set up with a
standard, minimal kernel, without any extra device drivers
built in.

� Three components to Linux module support:
✦ module management

✦ driver registration
✦ conflict resolution

Silberschatz, Galvin and Gagne
2002

20.13Operating System Concepts

Module Management

� Supports loading modules into memory and letting them
talk to the rest of the kernel.

� Module loading is split into two separate sections:
✦ Managing sections of module code in kernel memory

✦ Handling symbols that modules are allowed to reference

� The module requestor manages loading requested, but
currently unloaded, modules; it also regularly queries the
kernel to see whether a dynamically loaded module is still
in use, and will unload it when it is no longer actively
needed.

Silberschatz, Galvin and Gagne 200220.14Operating System Concepts

Driver Registration

� Allows modules to tell the rest of the kernel that a new
driver has become available.

� The kernel maintains dynamic tables of all known drivers,
and provides a set of routines to allow drivers to be added
to or removed from these tables at any time.

� Registration tables include the following items:
✦ Device drivers

✦ File systems
✦ Network protocols

✦ Binary format

Silberschatz, Galvin and Gagne 200220.15Operating System Concepts

Conflict Resolution

� A mechanism that allows different device drivers to
reserve hardware resources and to protect those
resources from accidental use by another driver

� The conflict resolution module aims to:
✦ Prevent modules from clashing over access to hardware

resources
✦ Prevent autoprobes from interfering with existing device

drivers
✦ Resolve conflicts with multiple drivers trying to access the

same hardware

Silberschatz, Galvin and Gagne 200220.16Operating System Concepts

Process Management

� UNIX process management separates the creation of
processes and the running of a new program into two
distinct operations.

✦ The fork system call creates a new process.

✦ A new program is run after a call to execve.

� Under UNIX, a process encompasses all the information
that the operating system must maintain t track the
context of a single execution of a single program.

� Under Linux, process properties fall into three groups:
the process’s identity, environment, and context.

Silberschatz, Galvin and Gagne 200220.17Operating System Concepts

Process Identity

� Process ID (PID). The unique identifier for the process;
used to specify processes to the operating system when
an application makes a system call to signal, modify, or
wait for another process.

� Credentials. Each process must have an associated
user ID and one or more group IDs that determine the
process’s rights to access system resources and files.

� Personality. Not traditionally found on UNIX systems,
but under Linux each process has an associated
personality identifier that can slightly modify the
semantics of certain system calls.
Used primarily by emulation libraries to request that
system calls be compatible with certain specific flavors of
UNIX.

Silberschatz, Galvin and Gagne 200220.18Operating System Concepts

Process Environment

� The process’s environment is inherited from its parent,
and is composed of two null-terminated vectors:

✦ The argument vector lists the command-line arguments
used to invoke the running program; conventionally starts
with the name of the program itself

✦ The environment vector is a list of “NAME=VALUE” pairs
that associates named environment variables with arbitrary
textual values.

� Passing environment variables among processes and
inheriting variables by a process’s children are flexible
means of passing information to components of the user-
mode system software.

� The environment-variable mechanism provides a
customization of the operating system that can be set on
a per-process basis, rather than being configured for the
system as a whole.

Silberschatz, Galvin and Gagne 200220.19Operating System Concepts

Process Context

� The (constantly changing) state of a running program at
any point in time.

� The scheduling context is the most important part of the
process context; it is the information that the scheduler
needs to suspend and restart the process.

� The kernel maintains accounting information about the
resources currently being consumed by each process,
and the total resources consumed by the process in its
lifetime so far.

� The file table is an array of pointers to kernel file
structures. When making file I/O system calls, processes
refer to files by their index into this table.

Silberschatz, Galvin and Gagne 200220.20Operating System Concepts

Process Context (Cont.)

� Whereas the file table lists the existing open files, the
file-system context applies to requests to open new
files. The current root and default directories to be used
for new file searches are stored here.

� The signal-handler table defines the routine in the
process’s address space to be called when specific
signals arrive.

� The virtual-memory context of a process describes the
full contents of the its private address space.

Silberschatz, Galvin and Gagne 200220.21Operating System Concepts

Processes and Threads

� Linux uses the same internal representation for
processes and threads; a thread is simply a new process
that happens to share the same address space as its
parent.

� A distinction is only made when a new thread is created
by the clone system call.

✦ fork creates a new process with its own entirely new
process context

✦ clone creates a new process with its own identity, but that is
allowed to share the data structures of its parent

� Using clone gives an application fine-grained control over
exactly what is shared between two threads.

Silberschatz, Galvin and Gagne 200220.22Operating System Concepts

Scheduling

� The job of allocating CPU time to different tasks within an
operating system.

� While scheduling is normally thought of as the running
and interrupting of processes, in Linux, scheduling also
includes the running of the various kernel tasks.

� Running kernel tasks encompasses both tasks that are
requested by a running process and tasks that execute
internally on behalf of a device driver.

Silberschatz, Galvin and Gagne 200220.23Operating System Concepts

Kernel Synchronization

� A request for kernel-mode execution can occur in two
ways:

✦ A running program may request an operating system
service, either explicitly via a system call, or implicitly, for
example, when a page fault occurs.

✦ A device driver may deliver a hardware interrupt that causes
the CPU to start executing a kernel-defined handler for that
interrupt.

� Kernel synchronization requires a framework that will
allow the kernel’s critical sections to run without
interruption by another critical section.

Silberschatz, Galvin and Gagne 200220.24Operating System Concepts

Kernel Synchronization (Cont.)

� Linux uses two techniques to protect critical sections:
1. Normal kernel code is nonpreemptible

– when a time interrupt is received while a process is
 executing a kernel system service routine, the kernel’s
 need_resched flag is set so that the scheduler will run
 once the system call has completed and control is
 about to be returned to user mode.

2. The second technique applies to critical sections that occur
in an interrupt service routines.
– By using the processor’s interrupt control hardware to
disable interrupts during a critical section, the kernel
guarantees that it can proceed without the risk of concurrent
access of shared data structures.

Silberschatz, Galvin and Gagne 200220.25Operating System Concepts

Kernel Synchronization (Cont.)

� To avoid performance penalties, Linux’s kernel uses a
synchronization architecture that allows long critical
sections to run without having interrupts disabled for the
critical section’s entire duration.

� Interrupt service routines are separated into a top half
and a bottom half.

✦ The top half is a normal interrupt service routine, and runs
with recursive interrupts disabled.

✦ The bottom half is run, with all interrupts enabled, by a
miniature scheduler that ensures that bottom halves never
interrupt themselves.

✦ This architecture is completed by a mechanism for disabling
selected bottom halves while executing normal, foreground
kernel code.

Silberschatz, Galvin and Gagne 200220.26Operating System Concepts

Interrupt Protection Levels

� Each level may be interrupted by code running at a
higher level, but will never be interrupted by code
running at the same or a lower level.

� User processes can always be preempted by another
process when a time-sharing scheduling interrupt
occurs.

Silberschatz, Galvin and Gagne 200220.27Operating System Concepts

Process Scheduling

� Linux uses two process-scheduling algorithms:
✦ A time-sharing algorithm for fair preemptive scheduling

between multiple processes

✦ A real-time algorithm for tasks where absolute priorities
are more important than fairness

� A process’s scheduling class defines which algorithm to
apply.

� For time-sharing processes, Linux uses a prioritized,
credit based algorithm.

✦ The crediting rule

factors in both the process’s history and its priority.

✦ This crediting system automatically prioritizes interactive
or I/O-bound processes.

priority
2

credits : credits +=

Silberschatz, Galvin and Gagne 200220.28Operating System Concepts

Process Scheduling (Cont.)

� Linux implements the FIFO and round-robin real-time
scheduling classes; in both cases, each process has a
priority in addition to its scheduling class.

✦ The scheduler runs the process with the highest priority; for
equal-priority processes, it runs the process waiting the
longest

✦ FIFO processes continue to run until they either exit or block

✦ A round-robin process will be preempted after a while and
moved to the end of the scheduling queue, so that round-
robing processes of equal priority automatically time-share
between themselves.

Silberschatz, Galvin and Gagne 200220.29Operating System Concepts

Symmetric Multiprocessing

� Linux 2.0 was the first Linux kernel to support SMP
hardware; separate processes or threads can execute in
parallel on separate processors.

� To preserve the kernel’s nonpreemptible synchronization
requirements, SMP imposes the restriction, via a single
kernel spinlock, that only one processor at a time may
execute kernel-mode code.

Silberschatz, Galvin and Gagne 200220.30Operating System Concepts

Memory Management

� Linux’s physical memory-management system deals with
allocating and freeing pages, groups of pages, and small
blocks of memory.

� It has additional mechanisms for handling virtual memory,
memory mapped into the address space of running
processes.

Silberschatz, Galvin and Gagne 200220.31Operating System Concepts

Splitting of Memory in a Buddy Heap

Silberschatz, Galvin and Gagne 200220.32Operating System Concepts

Managing Physical Memory

� The page allocator allocates and frees all physical pages; it
can allocate ranges of physically-contiguous pages on
request.

� The allocator uses a buddy-heap algorithm to keep track of
available physical pages.

✦ Each allocatable memory region is paired with an adjacent
partner.

✦ Whenever two allocated partner regions are both freed up they
are combined to form a larger region.

✦ If a small memory request cannot be satisfied by allocating an
existing small free region, then a larger free region will be
subdivided into two partners to satisfy the request.

� Memory allocations in the Linux kernel occur either statically
(drivers reserve a contiguous area of memory during system
boot time) or dynamically (via the page allocator).

Silberschatz, Galvin and Gagne 200220.33Operating System Concepts

Virtual Memory

� The VM system maintains the address space visible to
each process: It creates pages of virtual memory on
demand, and manages the loading of those pages from
disk or their swapping back out to disk as required.

� The VM manager maintains two separate views of a
process’s address space:

✦ A logical view describing instructions concerning the layout
of the address space.
The address space consists of a set of nonoverlapping
regions, each representing a continuous, page-aligned
subset of the address space.

✦ A physical view of each address space which is stored in
the hardware page tables for the process.

Silberschatz, Galvin and Gagne 200220.34Operating System Concepts

Virtual Memory (Cont.)

� Virtual memory regions are characterized by:
✦ The backing store, which describes from where the pages

for a region come; regions are usually backed by a file or by
nothing (demand-zero memory)

✦ The region’s reaction to writes (page sharing or copy-on-
write).

� The kernel creates a new virtual address space
1. When a process runs a new program with the exec system

call
2. Upon creation of a new process by the fork system call

Silberschatz, Galvin and Gagne 200220.35Operating System Concepts

Virtual Memory (Cont.)

� On executing a new program, the process is given a new,
completely empty virtual-address space; the program-
loading routines populate the address space with virtual-
memory regions.

� Creating a new process with fork involves creating a
complete copy of the existing process’s virtual address
space.

✦ The kernel copies the parent process’s VMA descriptors,
then creates a new set of page tables for the child.

✦ The parent’s page tables are copied directly into the child’s,
with the reference count of each page covered being
incremented.

✦ After the fork, the parent and child share the same physical
pages of memory in their address spaces.

Silberschatz, Galvin and Gagne 200220.36Operating System Concepts

Virtual Memory (Cont.)

� The VM paging system relocates pages of memory from
physical memory out to disk when the memory is needed
for something else.

� The VM paging system can be divided into two sections:
✦ The pageout-policy algorithm decides which pages to write

out to disk, and when.
✦ The paging mechanism actually carries out the transfer, and

pages data back into physical memory as needed.

Silberschatz, Galvin and Gagne 200220.37Operating System Concepts

Virtual Memory (Cont.)

� The Linux kernel reserves a constant, architecture-
dependent region of the virtual address space of every
process for its own internal use.

� This kernel virtual-memory area contains two regions:
✦ A static area that contains page table references to every

available physical page of memory in the system, so that
there is a simple translation from physical to virtual
addresses when running kernel code.

✦ The reminder of the reserved section is not reserved for any
specific purpose; its page-table entries can be modified to
point to any other areas of memory.

Silberschatz, Galvin and Gagne 200220.38Operating System Concepts

Executing and Loading User Programs

� Linux maintains a table of functions for loading programs;
it gives each function the opportunity to try loading the
given file when an exec system call is made.

� The registration of multiple loader routines allows Linux to
support both the ELF and a.out binary formats.

� Initially, binary-file pages are mapped into virtual memory;
only when a program tries to access a given page will a
page fault result in that page being loaded into physical
memory.

� An ELF-format binary file consists of a header followed by
several page-aligned sections; the ELF loader works by
reading the header and mapping the sections of the file
into separate regions of virtual memory.

Silberschatz, Galvin and Gagne 200220.39Operating System Concepts

Memory Layout for ELF Programs

Silberschatz, Galvin and Gagne 200220.40Operating System Concepts

Static and Dynamic Linking

� A program whose necessary library functions are
embedded directly in the program’s executable binary file
is statically linked to its libraries.

� The main disadvantage of static linkage is that every
program generated must contain copies of exactly the
same common system library functions.

� Dynamic linking is more efficient in terms of both physical
memory and disk-space usage because it loads the
system libraries into memory only once.

Silberschatz, Galvin and Gagne 200220.41Operating System Concepts

File Systems

� To the user, Linux’s file system appears as a hierarchical
directory tree obeying UNIX semantics.

� Internally, the kernel hides implementation details and
manages the multiple different file systems via an
abstraction layer, that is, the virtual file system (VFS).

� The Linux VFS is designed around object-oriented
principles and is composed of two components:

✦ A set of definitions that define what a file object is allowed to
look like

✔ The inode-object and the file-object structures represent
individual files

✔ the file system object represents an entire file system
✦ A layer of software to manipulate those objects.

Silberschatz, Galvin and Gagne 200220.42Operating System Concepts

The Linux Ext2fs File System

� Ext2fs uses a mechanism similar to that of BSD Fast
File System (ffs) for locating data blocks belonging to a
specific file.

� The main differences between ext2fs and ffs concern
their disk allocation policies.

✦ In ffs, the disk is allocated to files in blocks of 8Kb, with
blocks being subdivided into fragments of 1Kb to store
small files or partially filled blocks at the end of a file.

✦ Ext2fs does not use fragments; it performs its allocations
in smaller units. The default block size on ext2fs is 1Kb,
although 2Kb and 4Kb blocks are also supported.

✦ Ext2fs uses allocation policies designed to place logically
adjacent blocks of a file into physically adjacent blocks on
disk, so that it can submit an I/O request for several disk
blocks as a single operation.

Silberschatz, Galvin and Gagne 200220.43Operating System Concepts

Ext2fs Block-Allocation Policies

Silberschatz, Galvin and Gagne 200220.44Operating System Concepts

The Linux Proc File System

� The proc file system does not store data, rather, its
contents are computed on demand according to user file
I/O requests.

� proc must implement a directory structure, and the file
contents within; it must then define a unique and
persistent inode number for each directory and files it
contains.

✦ It uses this inode number to identify just what operation is
required when a user tries to read from a particular file
inode or perform a lookup in a particular directory inode.

✦ When data is read from one of these files, proc collects the
appropriate information, formats it into text form and places
it into the requesting process’s read buffer.

Silberschatz, Galvin and Gagne 200220.45Operating System Concepts

Input and Output

� The Linux device-oriented file system accesses disk
storage through two caches:

✦ Data is cached in the page cache, which is unified with the
virtual memory system

✦ Metadata is cached in the buffer cache, a separate cache
indexed by the physical disk block.

� Linux splits all devices into three classes:
✦ block devices allow random access to completely

independent, fixed size blocks of data
✦ character devices include most other devices; they don’t

need to support the functionality of regular files.
✦ network devices are interfaced via the kernel’s networking

subsystem

Silberschatz, Galvin and Gagne 200220.46Operating System Concepts

Device-Driver Block Structure

Silberschatz, Galvin and Gagne 200220.47Operating System Concepts

Block Devices

� Provide the main interface to all disk devices in a system.

� The block buffer cache serves two main purposes:
✦ it acts as a pool of buffers for active I/O

✦ it serves as a cache for completed I/O

� The request manager manages the reading and writing of
buffer contents to and from a block device driver.

Silberschatz, Galvin and Gagne 200220.48Operating System Concepts

Character Devices

� A device driver which does not offer random access to
fixed blocks of data.

� A character device driver must register a set of functions
which implement the driver’s various file I/O operations.

� The kernel performs almost no preprocessing of a file
read or write request to a character device, but simply
passes on the request to the device.

� The main exception to this rule is the special subset of
character device drivers which implement terminal
devices, for which the kernel maintains a standard
interface.

Silberschatz, Galvin and Gagne 200220.49Operating System Concepts

Interprocess Communication

� Like UNIX, Linux informs processes that an event has
occurred via signals.

� There is a limited number of signals, and they cannot
carry information: Only the fact that a signal occurred is
available to a process.

� The Linux kernel does not use signals to communicate
with processes with are running in kernel mode, rather,
communication within the kernel is accomplished via
scheduling states and wait.queue structures.

Silberschatz, Galvin and Gagne 200220.50Operating System Concepts

Passing Data Between Processes

� The pipe mechanism allows a child process to inherit a
communication channel to its parent, data written to one
end of the pipe can be read a the other.

� Shared memory offers an extremely fast way of
communicating; any data written by one process to a
shared memory region can be read immediately by any
other process that has mapped that region into its
address space.

� To obtain synchronization, however, shared memory
must be used in conjunction with another Interprocess-
communication mechanism.

Silberschatz, Galvin and Gagne 200220.51Operating System Concepts

Shared Memory Object

� The shared-memory object acts as a backing store for
shared-memory regions in the same way as a file can act
as backing store for a memory-mapped memory region.

� Shared-memory mappings direct page faults to map in
pages from a persistent shared-memory object.

� Shared-memory objects remember their contents even if
no processes are currently mapping them into virtual
memory.

Silberschatz, Galvin and Gagne 200220.52Operating System Concepts

Network Structure

� Networking is a key area of functionality for Linux.
✦ It supports the standard Internet protocols for UNIX to UNIX

communications.

✦ It also implements protocols native to nonUNIX operating
systems, in particular, protocols used on PC networks, such
as Appletalk and IPX.

� Internally, networking in the Linux kernel is implemented
by three layers of software:

✦ The socket interface
✦ Protocol drivers

✦ Network device drivers

Silberschatz, Galvin and Gagne 200220.53Operating System Concepts

Network Structure (Cont.)

� The most important set of protocols in the Linux
networking system is the internet protocol suite.

✦ It implements routing between different hosts anywhere on
the network.

✦ On top of the routing protocol are built the UDP, TCP and
ICMP protocols.

Silberschatz, Galvin and Gagne 200220.54Operating System Concepts

Security

� The pluggable authentication modules (PAM) system is
available under Linux.

� PAM is based on a shared library that can be used by any
system component that needs to authenticate users.

� Access control under UNIX systems, including Linux, is
performed through the use of unique numeric identifiers
(uid and gid).

� Access control is performed by assigning objects a
protections mask, which specifies which access
modes—read, write, or execute—are to be granted to
processes with owner, group, or world access.

Silberschatz, Galvin and Gagne 200220.55Operating System Concepts

Security (Cont.)

� Linux augments the standard UNIX setuid mechanism in
two ways:

✦ It implements the POSIX specification’s saved user-id
mechanism, which allows a process to repeatedly drop and
reacquire its effective uid.

✦ It has added a process characteristic that grants just a
subset of the rights of the effective uid.

� Linux provides another mechanism that allows a client to
selectively pass access to a single file to some server
process without granting it any other privileges.

Silberschatz, Galvin and Gagne  200221.1Operating System Concepts

Module 21: Windows 2000

! History
! Design Principles
! System Components
! Environmental Subsystems
! File system
! Networking
! Programmer Interface

Silberschatz, Galvin and Gagne  200221.2Operating System Concepts

Windows 2000

! 32-bit preemptive multitasking operating system for
Intel microprocessors.

! Key goals for the system:
" portability
" security
" POSIX compliance
" multiprocessor support
" extensibility
" international support
" compatibility with MS-DOS and MS-Windows

applications.
! Uses a micro-kernel architecture.
! Available in four versions, Professional, Server,

Advanced Server, National Server.
! In 1996, more NT server licenses were sold than UNIX

licenses

Silberschatz, Galvin and Gagne  200221.3Operating System Concepts

History

! In 1988, Microsoft decided to develop a “new technology”
(NT) portable operating system that supported both the
OS/2 and POSIX APIs.

! Originally, NT was supposed to use the OS/2 API as its
native environment but during development NT was
changed to use the Win32 API, reflecting the popularity of
Windows 3.0.

Silberschatz, Galvin and Gagne  200221.4Operating System Concepts

Design Principles

! Extensibility — layered architecture.
" Executive, which runs in protected mode, provides the basic

system services.
" On top of the executive, several server subsystems operate

in user mode.
" Modular structure allows additional environmental

subsystems to be added without affecting the executive.
! Portability — 2000 can be moved from on hardware

architecture to another with relatively few changes.
" Written in C and C++.
" Processor-dependent code is isolated in a dynamic link

library (DLL) called the “hardware abstraction layer” (HAL).

Silberschatz, Galvin and Gagne  200221.5Operating System Concepts

Design Principles (Cont.)

! Reliability — 2000 uses hardware protection for virtual
memory, and software protection mechanisms for
operating system resources.

! Compatibility — applications that follow the IEEE 1003.1
(POSIX) standard can be complied to run on 2000 without
changing the source code.

! Performance — 2000 subsystems can communicate with
one another via high-performance message passing.
" Preemption of low priority threads enables the system to

respond quickly to external events.
" Designed for symmetrical multiprocessing

! International support — supports different locales via the
national language support (NLS) API.

Silberschatz, Galvin and Gagne  200221.6Operating System Concepts

2000 Architecture

! Layered system of modules.

! Protected mode — HAL, kernel, executive.

! User mode — collection of subsystems
" Environmental subsystems emulate different operating

systems.
" Protection subsystems provide security functions.

Silberschatz, Galvin and Gagne  200221.7Operating System Concepts

Depiction of 2000 Architecture

Silberschatz, Galvin and Gagne  200221.8Operating System Concepts

! Foundation for the executive and the subsystems.
! Never paged out of memory; execution is never

preempted.
! Four main responsibilities:

" thread scheduling
" interrupt and exception handling
" low-level processor synchronization
" recovery after a power failure

! Kernel is object-oriented, uses two sets of objects.
" dispatcher objects control dispatching and synchronization

(events, mutants, mutexes, semaphores, threads and
timers).

" control objects (asynchronous procedure calls, interrupts,
power notify, power status, process and profile objects.)

System Components — Kernel

Silberschatz, Galvin and Gagne  200221.9Operating System Concepts

Kernel — Process and Threads

! The process has a virtual memory address space,
information (such as a base priority), and an affinity for
one or more processors.

! Threads are the unit of execution scheduled by the
kernel’s dispatcher.

! Each thread has its own state, including a priority,
processor affinity, and accounting information.

! A thread can be one of six states: ready, standby,
running, waiting, transition, and terminated.

Silberschatz, Galvin and Gagne  200221.10Operating System Concepts

Kernel — Scheduling

! The dispatcher uses a 32-level priority scheme to
determine the order of thread execution. Priorities are
divided into two classes..
" The real-time class contains threads with priorities ranging

from 16 to 31.
" The variable class contains threads having priorities from 0

to 15.
! Characteristics of 2000’s priority strategy.

" Trends to give very good response times to interactive
threads that are using the mouse and windows.

" Enables I/O-bound threads to keep the I/O devices busy.
" Complete-bound threads soak up the spare CPU cycles in

the background.

Silberschatz, Galvin and Gagne  200221.11Operating System Concepts

Kernel — Scheduling (Cont.)

! Scheduling can occur when a thread enters the ready or
wait state, when a thread terminates, or when an
application changes a thread’s priority or processor
affinity.

! Real-time threads are given preferential access to the
CPU; but 2000 does not guarantee that a real-time thread
will start to execute within any particular time limit. (This is
known as soft realtime.)

Silberschatz, Galvin and Gagne  200221.12Operating System Concepts

Windows 2000 Interrupt Request Levels

Silberschatz, Galvin and Gagne  200221.13Operating System Concepts

Kernel — Trap Handling

! The kernel provides trap handling when exceptions and
interrupts are generated by hardware of software.

! Exceptions that cannot be handled by the trap handler
are handled by the kernel's exception dispatcher.

! The interrupt dispatcher in the kernel handles interrupts
by calling either an interrupt service routine (such as in a
device driver) or an internal kernel routine.

! The kernel uses spin locks that reside in global memory
to achieve multiprocessor mutual exclusion.

Silberschatz, Galvin and Gagne  200221.14Operating System Concepts

Executive — Object Manager

! 2000 uses objects for all its services and entities; the
object manger supervises the use of all the objects.
" Generates an object handle
" Checks security.
" Keeps track of which processes are using each object.

! Objects are manipulated by a standard set of methods,
namely create, open, close, delete, query
name, parse and security.

Silberschatz, Galvin and Gagne  200221.15Operating System Concepts

Executive — Naming Objects

! The 2000 executive allows any object to be given a
name, which may be either permanent or temporary.

! Object names are structured like file path names in MS-
DOS and UNIX.

! 2000 implements a symbolic link object, which is similar
to symbolic links in UNIX that allow multiple nicknames or
aliases to refer to the same file.

! A process gets an object handle by creating an object by
opening an existing one, by receiving a duplicated handle
from another process, or by inheriting a handle from a
parent process.

! Each object is protected by an access control list.

Silberschatz, Galvin and Gagne  200221.16Operating System Concepts

Executive — Virtual Memory Manager

! The design of the VM manager assumes that the
underlying hardware supports virtual to physical mapping
a paging mechanism, transparent cache coherence on
multiprocessor systems, and virtual addressing aliasing.

! The VM manager in 2000 uses a page-based
management scheme with a page size of 4 KB.

! The 2000 VM manager uses a two step process to
allocate memory.
" The first step reserves a portion of the process’s address

space.
" The second step commits the allocation by assigning space

in the 2000 paging file.

Silberschatz, Galvin and Gagne  200221.17Operating System Concepts

Virtual-Memory Layout

Silberschatz, Galvin and Gagne  200221.18Operating System Concepts

Virtual Memory Manager (Cont.)

! The virtual address translation in 2000 uses several
data structures.
" Each process has a page directory that contains 1024

page directory entries of size 4 bytes.
" Each page directory entry points to a page table which

contains 1024 page table entries (PTEs) of size 4 bytes.
" Each PTE points to a 4 KB page frame in physical

memory.
! A 10-bit integer can represent all the values form 0 to

1023, therefore, can select any entry in the page
directory, or in a page table.

! This property is used when translating a virtual address
pointer to a bye address in physical memory.

! A page can be in one of six states: valid, zeroed, free
standby, modified and bad.

Silberschatz, Galvin and Gagne  200221.19Operating System Concepts

Virtual-to-Physical Address Translation

! 10 bits for page directory entry, 20 bits for page table
entry, and 12 bits for byte offset in page.

Silberschatz, Galvin and Gagne  200221.20Operating System Concepts

Page File Page-Table Entry

! 5 bits for page protection, 20 bits for page frame
address, 4 bits to select a paging file, and 3 bits that
describe the page state. V = 0

Silberschatz, Galvin and Gagne  200221.21Operating System Concepts

Executive — Process Manager

! Provides services for creating, deleting, and using
threads and processes.

! Issues such as parent/child relationships or process
hierarchies are left to the particular environmental
subsystem that owns the process.

Silberschatz, Galvin and Gagne  200221.22Operating System Concepts

Executive — Local Procedure Call Facility

! The LPC passes requests and results between client and
server processes within a single machine.

! In particular, it is used to request services from the
various 2000 subsystems.

! When a LPC channel is created, one of three types of
message passing techniques must be specified.
" First type is suitable for small messages, up to 256 bytes;

port's message queue is used as intermediate storage, and
the messages are copied from one process to the other.

" Second type avoids copying large messages by pointing to
a shared memory section object created for the channel.

" Third method, called quick LPC was used by graphical
display portions of the Win32 subsystem.

Silberschatz, Galvin and Gagne  200221.23Operating System Concepts

Executive — I/O Manager

! The I/O manager is responsible for
" file systems
" cache management
" device drivers
" network drivers

! Keeps track of which installable file systems are loaded,
and manages buffers for I/O requests.

! Works with VM Manager to provide memory-mapped file
I/O.

! Controls the 2000 cache manager, which handles caching
for the entire I/O system.

! Supports both synchronous and asynchronous operations,
provides time outs for drivers, and has mechanisms for
one driver to call another.

Silberschatz, Galvin and Gagne  200221.24Operating System Concepts

File I/O

Silberschatz, Galvin and Gagne  200221.25Operating System Concepts

Executive — Security Reference Monitor

! The object-oriented nature of 2000 enables the use of a
uniform mechanism to perform runtime access validation
and audit checks for every entity in the system.

! Whenever a process opens a handle to an object, the
security reference monitor checks the process’s security
token and the object’s access control list to see whether
the process has the necessary rights.

Silberschatz, Galvin and Gagne  200221.26Operating System Concepts

Executive – Plug-and-Play Manager

! Plug-and-Play (PnP) manager is used to recognize and
adapt to changes in the hardware configuration.

! When new devices are added (for example, PCI or USB),
the PnP manager loads the appropriate driver.

! The manager also keeps track of the resources used by
each device.

Silberschatz, Galvin and Gagne  200221.27Operating System Concepts

Environmental Subsystems

! User-mode processes layered over the native 2000
executive services to enable 2000 to run programs
developed for other operating system.

! 2000 uses the Win32 subsystem as the main operating
environment; Win32 is used to start all processes. It also
provides all the keyboard, mouse and graphical display
capabilities.

! MS-DOS environment is provided by a Win32 application
called the virtual dos machine (VDM), a user-mode
process that is paged and dispatched like any other 2000
thread.

Silberschatz, Galvin and Gagne  200221.28Operating System Concepts

Environmental Subsystems (Cont.)

! 16-Bit Windows Environment:
" Provided by a VDM that incorporates Windows on Windows.
" Provides the Windows 3.1 kernel routines and sub routines

for window manager and GDI functions.
! The POSIX subsystem is designed to run POSIX

applications following the POSIX.1 standard which is
based on the UNIX model.

Silberschatz, Galvin and Gagne  200221.29Operating System Concepts

Environmental Subsystems (Cont.)

! OS/2 subsystems runs OS/2 applications.

! Logon and Security Subsystems authenticates users
logging to to Windows 2000 systems. Users are required
to have account names and passwords.
- The authentication package authenticates users
whenever they attempt to access an object in the system.
Windows 2000 uses Kerberos as the default
authentication package.

Silberschatz, Galvin and Gagne  200221.30Operating System Concepts

File System

! The fundamental structure of the 2000 file system (NTFS)
is a volume.
" Created by the 2000 disk administrator utility.
" Based on a logical disk partition.
" May occupy a portions of a disk, an entire disk, or span

across several disks.
! All metadata, such as information about the volume, is

stored in a regular file.
! NTFS uses clusters as the underlying unit of disk

allocation.
" A cluster is a number of disk sectors that is a power of two.
" Because the cluster size is smaller than for the 16-bit FAT

file system, the amount of internal fragmentation is reduced.

Silberschatz, Galvin and Gagne  200221.31Operating System Concepts

File System — Internal Layout

! NTFS uses logical cluster numbers (LCNs) as disk
addresses.

! A file in NTFS is not a simple byte stream, as in MS-DOS
or UNIX, rather, it is a structured object consisting of
attributes.

! Every file in NTFS is described by one or more records in
an array stored in a special file called the Master File
Table (MFT).

! Each file on an NTFS volume has a unique ID called a file
reference.
" 64-bit quantity that consists of a 48-bit file number and a 16-

bit sequence number.
" Can be used to perform internal consistency checks.

! The NTFS name space is organized by a hierarchy of
directories; the index root contains the top level of the B+
tree.

Silberschatz, Galvin and Gagne  200221.32Operating System Concepts

File System — Recovery

! All file system data structure updates are performed
inside transactions that are logged.
" Before a data structure is altered, the transaction writes a

log record that contains redo and undo information.
" After the data structure has been changed, a commit record

is written to the log to signify that the transaction succeeded.
" After a crash, the file system data structures can be

restored to a consistent state by processing the log records.

Silberschatz, Galvin and Gagne  200221.33Operating System Concepts

File System — Recovery (Cont.)

! This scheme does not guarantee that all the user file data
can be recovered after a crash, just that the file system
data structures (the metadata files) are undamaged and
reflect some consistent state prior to the crash.

! The log is stored in the third metadata file at the
beginning of the volume.

! The logging functionality is provided by the 2000 log file
service.

Silberschatz, Galvin and Gagne  200221.34Operating System Concepts

File System — Security

! Security of an NTFS volume is derived from the 2000
object model.

! Each file object has a security descriptor attribute stored
in this MFT record.

! This attribute contains the access token of the owner of
the file, and an access control list that states the access
privileges that are granted to each user that has access
to the file.

Silberschatz, Galvin and Gagne  200221.35Operating System Concepts

Volume Management and Fault Tolerance

! FtDisk, the fault tolerant disk driver for 2000, provides
several ways to combine multiple SCSI disk drives into
one logical volume.

! Logically concatenate multiple disks to form a large
logical volume, a volume set.

! Interleave multiple physical partitions in round-robin
fashion to form a stripe set (also called RAID level 0, or
“disk striping”).
" Variation: stripe set with parity, or RAID level 5.

! Disk mirroring, or RAID level 1, is a robust scheme that
uses a mirror set — two equally sized partitions on tow
disks with identical data contents.

! To deal with disk sectors that go bad, FtDisk, uses a
hardware technique called sector sparing and NTFS uses
a software technique called cluster remapping.

Silberschatz, Galvin and Gagne  200221.36Operating System Concepts

Volume Set On Two Drives

Silberschatz, Galvin and Gagne  200221.37Operating System Concepts

Stripe Set on Two Drives

Silberschatz, Galvin and Gagne  200221.38Operating System Concepts

Stripe Set With Parity on Three Drives

Silberschatz, Galvin and Gagne  200221.39Operating System Concepts

Mirror Set on Two Drives

Silberschatz, Galvin and Gagne  200221.40Operating System Concepts

File System — Compression

! To compress a file, NTFS divides the file’s data into
compression units, which are blocks of 16 contiguous
clusters.

! For sparse files, NTFS uses another technique to save
space.
" Clusters that contain all zeros are not actually allocated or

stored on disk.
" Instead, gaps are left in the sequence of virtual cluster

numbers stored in the MFT entry for the file.
" When reading a file, if a gap in the virtual cluster numbers is

found, NTFS just zero-fills that portion of the caller’s buffer.

Silberschatz, Galvin and Gagne  200221.41Operating System Concepts

File System — Reparse Points

! A reparse point returns an error code when accessed.
The reparse data tells the I/O manager what to do next.

! Reparse points can be used to provide the functionality of
UNIX mounts

! Reparse points can also be used to access files that have
been moved to offline storage.

Silberschatz, Galvin and Gagne  200221.42Operating System Concepts

Networking

! 2000 supports both peer-to-peer and client/server
networking; it also has facilities for network management.

! To describe networking in 2000, we refer to two of the
internal networking interfaces:
" NDIS (Network Device Interface Specification) — Separates

network adapters from the transport protocols so that either
can be changed without affecting the other.

" TDI (Transport Driver Interface) — Enables any session
layer component to use any available transport mechanism.

! 2000 implements transport protocols as drivers that can
be loaded and unloaded from the system dynamically.

Silberschatz, Galvin and Gagne  200221.43Operating System Concepts

Networking — Protocols

! The server message block (SMB) protocol is used to
send I/O requests over the network. It has four message
types:
- Session control

- File

- Printer

- Message

! The network basic Input/Output system (NetBIOS) is a
hardware abstraction interface for networks. Used to:
" Establish logical names on the network.
" Establish logical connections of sessions between two

logical names on the network.
" Support reliable data transfer for a session via NetBIOS

requests or SMBs

Silberschatz, Galvin and Gagne  200221.44Operating System Concepts

Networking — Protocols (Cont.)

! NetBEUI (NetBIOS Extended User Interface): default
protocol for Windows 95 peer networking and Windows
for Workgroups; used when 2000 wants to share
resources with these networks.

! 2000 uses the TCP/IP Internet protocol to connect to a
wide variety of operating systems and hardware
platforms.

! PPTP (Point-to-Point Tunneling Protocol) is used to
communicate between Remote Access Server modules
running on 2000 machines that are connected over the
Internet.

! The 2000 NWLink protocol connects the NetBIOS to
Novell NetWare networks.

Silberschatz, Galvin and Gagne  200221.45Operating System Concepts

Networking — Protocols (Cont.)

! The Data Link Control protocol (DLC) is used to access
IBM mainframes and HP printers that are directly
connected to the network.

! 2000 systems can communicate with Macintosh
computers via the Apple Talk protocol if an 2000 Server
on the network is running the Windows 2000 Services for
Macintosh package.

Silberschatz, Galvin and Gagne  200221.46Operating System Concepts

Networking — Dist. Processing Mechanisms

! 2000 supports distributed applications via named
NetBIOS,named pipes and mailslots, Windows Sockets,
Remote Procedure Calls (RPC), and Network Dynamic
Data Exchange (NetDDE).

! NetBIOS applications can communicate over the network
using NetBEUI, NWLink, or TCP/IP.

! Named pipes are connection-oriented messaging
mechanism that are named via the uniform naming
convention (UNC).

! Mailslots are a connectionless messaging mechanism
that are used for broadcast applications, such as for
finding components on the network,

! Winsock, the windows sockets API, is a session-layer
interface that provides a standardized interface to many
transport protocols that may have different addressing
schemes.

Silberschatz, Galvin and Gagne  200221.47Operating System Concepts

Distributed Processing Mechanisms (Cont.)

! The 2000 RPC mechanism follows the widely-used
Distributed Computing Environment standard for RPC
messages, so programs written to use 2000 RPCs are
very portable.
" RPC messages are sent using NetBIOS, or Winsock on

TCP/IP networks, or named pipes on LAN Manager
networks.

" 2000 provides the Microsoft Interface Definition Language
to describe the remote procedure names, arguments, and
results.

Silberschatz, Galvin and Gagne  200221.48Operating System Concepts

Networking — Redirectors and Servers

! In 2000, an application can use the 2000 I/O API to
access files from a remote computer as if they were local,
provided that the remote computer is running an MS-NET
server.

! A redirector is the client-side object that forwards I/O
requests to remote files, where they are satisfied by a
server.

! For performance and security, the redirectors and servers
run in kernel mode.

Silberschatz, Galvin and Gagne  200221.49Operating System Concepts

Access to a Remote File

! The application calls the I/O manager to request that a file
be opened (we assume that the file name is in the
standard UNC format).

! The I/O manager builds an I/O request packet.
! The I/O manager recognizes that the access is for a

remote file, and calls a driver called a Multiple Universal
Naming Convention Provider (MUP).

! The MUP sends the I/O request packet asynchronously to
all registered redirectors.

! A redirector that can satisfy the request responds to the
MUP.
" To avoid asking all the redirectors the same question in the

future, the MUP uses a cache to remember with redirector
can handle this file.

Silberschatz, Galvin and Gagne  200221.50Operating System Concepts

Access to a Remote File (Cont.)

! The redirector sends the network request to the remote
system.

! The remote system network drivers receive the request
and pass it to the server driver.

! The server driver hands the request to the proper local
file system driver.

! The proper device driver is called to access the data.
! The results are returned to the server driver, which sends

the data back to the requesting redirector.

Silberschatz, Galvin and Gagne  200221.51Operating System Concepts

Networking — Domains

! NT uses the concept of a domain to manage global
access rights within groups.

! A domain is a group of machines running NT server that
share a common security policy and user database.

! 2000 provides three models of setting up trust
relationships.
" One way, A trusts B
" Two way, transitive, A trusts B, B trusts C so A, B, C trust

each other
" Crosslink – allows authentication to bypass hierarchy to cut

down on authentication traffic.

Silberschatz, Galvin and Gagne  200221.52Operating System Concepts

Name Resolution in TCP/IP Networks

! On an IP network, name resolution is the process of converting
a computer name to an IP address.

e.g., www.bell-labs.com resolves to 135.104.1.14

! 2000 provides several methods of name resolution:
" Windows Internet Name Service (WINS)
" broadcast name resolution
" domain name system (DNS)
" a host file
" an LMHOSTS file

Silberschatz, Galvin and Gagne  200221.53Operating System Concepts

Name Resolution (Cont.)

! WINS consists of two or more WINS servers that maintain
a dynamic database of name to IP address bindings, and
client software to query the servers.

! WINS uses the Dynamic Host Configuration Protocol
(DHCP), which automatically updates address
configurations in the WINS database, without user or
administrator intervention.

Silberschatz, Galvin and Gagne  200221.54Operating System Concepts

Programmer Interface — Access to Kernel Obj.

! A process gains access to a kernel object named XXX by
calling the CreateXXX function to open a handle to XXX;
the handle is unique to that process.

! A handle can be closed by calling the CloseHandle
function; the system may delete the object if the count of
processes using the object drops to 0.

! 2000 provides three ways to share objects between
processes.
" A child process inherits a handle to the object.
" One process gives the object a name when it is created and

the second process opens that name.
! DuplicateHandle function:

Given a handle to process and the handle’s value a
second process can get a handle to the same object,
and thus share it.

Silberschatz, Galvin and Gagne  200221.55Operating System Concepts

Programmer Interface — Process Management

! Process is started via the CreateProcess routine which
loads any dynamic link libraries that are used by the
process, and creates a primary thread.

! Additional threads can be created by the CreateThread
function.

! Every dynamic link library or executable file that is loaded
into the address space of a process is identified by an
instance handle.

Silberschatz, Galvin and Gagne  200221.56Operating System Concepts

Process Management (Cont.)

! Scheduling in Win32 utilizes four priority classes:
- IDLE_PRIORITY_CLASS (priority level 4)
- NORMAL_PRIORITY_CLASS (level8 — typical for most

processes
- HIGH_PRIORITY_CLASS (level 13)
- REALTIME_PRIORITY_CLASS (level 24)

! To provide performance levels needed for interactive
programs, 2000 has a special scheduling rule for
processes in the NORMAL_PRIORITY_CLASS.
" 2000 distinguishes between the foreground process that is

currently selected on the screen, and the background
processes that are not currently selected.

" When a process moves into the foreground, 2000 increases
the scheduling quantum by some factor, typically 3.

Silberschatz, Galvin and Gagne  200221.57Operating System Concepts

Process Management (Cont.)

! The kernel dynamically adjusts the priority of a thread
depending on whether it is I/O-bound or CPU-bound.

! To synchronize the concurrent access to shared objects
by threads, the kernel provides synchronization objects,
such as semaphores and mutexes.
" In addition, threads can synchronize by using the

WaitForSingleObject or WaitForMultipleObjects
functions.

" Another method of synchronization in the Win32 API is the
critical section.

Silberschatz, Galvin and Gagne  200221.58Operating System Concepts

Process Management (Cont.)

! A fiber is user-mode code that gets scheduled according
to a user-defined scheduling algorithm.
" Only one fiber at a time is permitted to execute, even on

multiprocessor hardware.
" 2000 includes fibers to facilitate the porting of legacy UNIX

applications that are written for a fiber execution model.

Silberschatz, Galvin and Gagne  200221.59Operating System Concepts

Programmer Interface — Interprocess Comm.

! Win32 applications can have interprocess communication
by sharing kernel objects.

! An alternate means of interprocess communications is
message passing, which is particularly popular for
Windows GUI applications.
" One thread sends a message to another thread or to a

window.
" A thread can also send data with the message.

! Every Win32 thread has its own input queue from which
the thread receives messages.

! This is more reliable than the shared input queue of 16-bit
windows, because with separate queues, one stuck
application cannot block input to the other applications.

Silberschatz, Galvin and Gagne  200221.60Operating System Concepts

Programmer Interface — Memory Management

! Virtual memory:
- VirtualAlloc reserves or commits virtual memory.
- VirtualFree decommits or releases the memory.
" These functions enable the application to determine the

virtual address at which the memory is allocated.
! An application can use memory by memory mapping a

file into its address space.
" Multistage process.
" Two processes share memory by mapping the same file into

their virtual memory.

Silberschatz, Galvin and Gagne  200221.61Operating System Concepts

Memory Management (Cont.)

! A heap in the Win32 environment is a region of reserved
address space.
" A Win 32 process is created with a 1 MB default heap.
" Access is synchronized to protect the heap’s space

allocation data structures from damage by concurrent
updates by multiple threads.

! Because functions that rely on global or static data
typically fail to work properly in a multithreaded
environment, the thread-local storage mechanism
allocates global storage on a per-thread basis.
" The mechanism provides both dynamic and static methods

of creating thread-local storage.

Silberschatz, Galvin and Gagne 2002A.1Operating System Concepts

Module A: The FreeBSD System

� History
� Design Principles
� Programmer Interface
� User Interface
� Process Management
� Memory Management
� File System
� I/O System
� Interprocess Communication

Silberschatz, Galvin and Gagne 2002A.2Operating System Concepts

History

� First developed in 1969 by Ken Thompson and Dennis Ritchie
of the Research Group at Bell Laboratories; incorporated
features of other operating systems, especially MULTICS.

� The third version was written in C, which was developed at
Bell Labs specifically to support UNIX.

� The most influential of the non-Bell Labs and non-AT&T UNIX
development groups — University of California at Berkeley
(Berkeley Software Distributions).

✦ 4BSD UNIX resulted from DARPA funding to develop a standard
UNIX system for government use.

✦ Developed for the VAX, 4.3BSD is one of the most influential
versions, and has been ported to many other platforms.

� Several standardization projects seek to consolidate the
variant flavors of UNIX leading to one programming interface
to UNIX.

Silberschatz, Galvin and Gagne 2002A.3Operating System Concepts

History of UNIX Versions

Silberschatz, Galvin and Gagne 2002A.4Operating System Concepts

Early Advantages of UNIX

� Written in a high-level language.
� Distributed in source form.
� Provided powerful operating-system primitives on an

inexpensive platform.
� Small size, modular, clean design.

Silberschatz, Galvin and Gagne 2002A.5Operating System Concepts

UNIX Design Principles

� Designed to be a time-sharing system.
� Has a simple standard user interface (shell) that can be

replaced.
� File system with multilevel tree-structured directories.
� Files are supported by the kernel as unstructured

sequences of bytes.
� Supports multiple processes; a process can easily create

new processes.
� High priority given to making system interactive, and

providing facilities for program development.

Silberschatz, Galvin and Gagne 2002A.6Operating System Concepts

Programmer Interface

� Kernel: everything below the system-call interface and
above the physical hardware.

✦ Provides file system, CPU scheduling, memory
management, and other OS functions through system calls.

� Systems programs: use the kernel-supported system
calls to provide useful functions, such as compilation and
file manipulation.

Like most computer systems, UNIX consists of two separable parts:

Silberschatz, Galvin and Gagne 2002A.7Operating System Concepts

4.4BSD Layer Structure

Silberschatz, Galvin and Gagne 2002A.8Operating System Concepts

System Calls

� System calls define the programmer interface to UNIX
� The set of systems programs commonly available defines

the user interface.
� The programmer and user interface define the context

that the kernel must support.
� Roughly three categories of system calls in UNIX.

✦ File manipulation (same system calls also support device
manipulation)

✦ Process control
✦ Information manipulation.

Silberschatz, Galvin and Gagne 2002A.9Operating System Concepts

File Manipulation

� A file is a sequence of bytes; the kernel does not impose
a structure on files.

� Files are organized in tree-structured directories.
� Directories are files that contain information on how to

find other files.
� Path name: identifies a file by specifying a path through

the directory structure to the file.
✦ Absolute path names start at root of file system
✦ Relative path names start at the current directory

� System calls for basic file manipulation: create, open,
read, write, close, unlink, trunc.

Silberschatz, Galvin and Gagne 2002A.10Operating System Concepts

Typical UNIX Directory Structure

Silberschatz, Galvin and Gagne 2002A.11Operating System Concepts

Process Control

� A process is a program in execution.
� Processes are identified by their process identifier, an

integer.
� Process control system calls

✦ fork creates a new process
✦ execve is used after a fork to replace on of the two

processes’s virtual memory space with a new program
✦ exit terminates a process

✦ A parent may wait for a child process to terminate; wait
provides the process id of a terminated child so that the
parent can tell which child terminated.

✦ wait3 allows the parent to collect performance statistics
about the child

� A zombie process results when the parent of a defunct
child process exits before the terminated child.

Silberschatz, Galvin and Gagne 2002A.12Operating System Concepts

Illustration of Process Control Calls

Silberschatz, Galvin and Gagne 2002A.13Operating System Concepts

Process Control (Cont.)

� Processes communicate via pipes; queues of bytes
between two processes that are accessed by a file
descriptor.

� All user processes are descendants of one original
process, init.

� init forks a getty process: initializes terminal line
parameters and passes the user’s login name to login.

✦ login sets the numeric user identifier of the process to that
of the user

✦ executes a shell which forks subprocesses for user
commands.

Silberschatz, Galvin and Gagne 2002A.14Operating System Concepts

Process Control (Cont.)

� setuid bit sets the effective user identifier of the process
to the user identifier of the owner of the file, and leaves
the real user identifier as it was.

� setuid scheme allows certain processes to have more
than ordinary privileges while still being executable by
ordinary users.

Silberschatz, Galvin and Gagne 2002A.15Operating System Concepts

Signals

� Facility for handling exceptional conditions similar to
software interrupts.

� The interrupt signal, SIGINT, is used to stop a command
before that command completes (usually produced by ^C).

� Signal use has expanded beyond dealing with exceptional
events.

✦ Start and stop subprocesses on demand

✦ SIGWINCH informs a process that the window in which output
is being displayed has changed size.

✦ Deliver urgent data from network connections.

Silberschatz, Galvin and Gagne 2002A.16Operating System Concepts

Process Groups

� Set of related processes that cooperate to accomplish a
common task.

� Only one process group may use a terminal device for I/O
at any time.

✦ The foreground job has the attention of the user on the
terminal.

✦ Background jobs – nonattached jobs that perform their
function without user interaction.

� Access to the terminal is controlled by process group
signals.

Silberschatz, Galvin and Gagne 2002A.17Operating System Concepts

Process Groups (Cont.)

� Each job inherits a controlling terminal from its parent.
✦ If the process group of the controlling terminal matches the

group of a process, that process is in the foreground.

✦ SIGTTIN or SIGTTOU freezes a background process that
attempts to perform I/O; if the user foregrounds that
process, SIGCONT indicates that the process can now
perform I/O.

✦ SIGSTOP freezes a foreground process.

Silberschatz, Galvin and Gagne 2002A.18Operating System Concepts

Information Manipulation

� System calls to set and return an interval timer:
getitmer/setitmer.

� Calls to set and return the current time:
gettimeofday/settimeofday.

� Processes can ask for
✦ their process identifier: getpid
✦ their group identifier: getgid
✦ the name of the machine on which they are executing:

gethostname

Silberschatz, Galvin and Gagne 2002A.19Operating System Concepts

Library Routines

� The system-call interface to UNIX is supported and
augmented by a large collection of library routines

� Header files provide the definition of complex data
structures used in system calls.

� Additional library support is provided for mathematical
functions, network access, data conversion, etc.

Silberschatz, Galvin and Gagne 2002A.20Operating System Concepts

User Interface

� Programmers and users mainly deal with already existing
systems programs: the needed system calls are
embedded within the program and do not need to be
obvious to the user.

� The most common systems programs are file or directory
oriented.

✦ Directory: mkdir, rmdir, cd, pwd
✦ File: ls, cp, mv, rm

� Other programs relate to editors (e.g., emacs, vi) text
formatters (e.g., troff, TEX), and other activities.

Silberschatz, Galvin and Gagne 2002A.21Operating System Concepts

Shells and Commands

� Shell – the user process which executes programs (also
called command interpreter).

� Called a shell, because it surrounds the kernel.
� The shell indicates its readiness to accept another

command by typing a prompt, and the user types a
command on a single line.

� A typical command is an executable binary object file.
� The shell travels through the search path to find the

command file, which is then loaded and executed.
� The directories /bin and /usr/bin are almost always in the

search path.

Silberschatz, Galvin and Gagne 2002A.22Operating System Concepts

Shells and Commands (Cont.)

� Typical search path on a BSD system:

(./home/prof/avi/bin /usr/local/bin
/usr/ucb/bin/usr/bin)

� The shell usually suspends its own execution until the
command completes.

Silberschatz, Galvin and Gagne 2002A.23Operating System Concepts

Standard I/O

� Most processes expect three file descriptors to be open
when they start:

✦ standard input – program can read what the user types

✦ standard output – program can send output to user’s screen
✦ standard error – error output

� Most programs can also accept a file (rather than a
terminal) for standard input and standard output.

� The common shells have a simple syntax for changing
what files are open for the standard I/O streams of a
process — I/O redirection.

Silberschatz, Galvin and Gagne 2002A.24Operating System Concepts

Standard I/O Redirection

Command Meaning of command
% ls > filea direct output of ls to file filea
% pr < filea > fileb input from filea and output to fileb
% lpr < fileb input from fileb
%% make program > & errs save both standard output and

standard error in a file

Silberschatz, Galvin and Gagne 2002A.25Operating System Concepts

Pipelines, Filters, and Shell Scripts

� Can coalesce individual commands via a vertical bar that
tells the shell to pass the previous command’s output as
input to the following command

% ls | pr | lpr
� Filter – a command such as pr that passes its standard

input to its standard output, performing some processing
on it.

� Writing a new shell with a different syntax and semantics
would change the user view, but not change the kernel or
programmer interface.

� X Window System is a widely accepted iconic interface
for UNIX.

Silberschatz, Galvin and Gagne 2002A.26Operating System Concepts

Process Management

� Representation of processes is a major design problem
for operating system.

� UNIX is distinct from other systems in that multiple
processes can be created and manipulated with ease.

� These processes are represented in UNIX by various
control blocks.

✦ Control blocks associated with a process are stored in the
kernel.

✦ Information in these control blocks is used by the kernel for
process control and CPU scheduling.

Silberschatz, Galvin and Gagne 2002A.27Operating System Concepts

Process Control Blocks

� The most basic data structure associated with processes
is the process structure.

✦ unique process identifier

✦ scheduling information (e.g., priority)
✦ pointers to other control blocks

� The virtual address space of a user process is divided
into text (program code), data, and stack segments.

� Every process with sharable text has a pointer form its
process structure to a text structure.

✦ always resident in main memory.

✦ records how many processes are using the text segment

✦ records were the page table for the text segment can be
found on disk when it is swapped.

Silberschatz, Galvin and Gagne 2002A.28Operating System Concepts

System Data Segment

� Most ordinary work is done in user mode; system calls
are performed in system mode.

� The system and user phases of a process never execute
simultaneously.

� a kernel stack (rather than the user stack) is used for a
process executing in system mode.

� The kernel stack and the user structure together compose
the system data segment for the process.

Silberschatz, Galvin and Gagne 2002A.29Operating System Concepts

Finding parts of a process using process structure

Silberschatz, Galvin and Gagne 2002A.30Operating System Concepts

Allocating a New Process Structure

� fork allocates a new process structure for the child
process, and copies the user structure.

✦ new page table is constructed

✦ new main memory is allocated for the data and stack
segments of the child process

✦ copying the user structure preserves open file descriptors,
user and group identifiers, signal handling, etc.

Silberschatz, Galvin and Gagne 2002A.31Operating System Concepts

Allocating a New Process Structure (Cont.)

� vfork does not copy the data and stack to t he new
process; the new process simply shares the page table of
the old one.

✦ new user structure and a new process structure are still
created

✦ commonly used by a shell to execute a command and to
wait for its completion

� A parent process uses vfork to produce a child process;
the child uses execve to change its virtual address
space, so there is no need for a copy of the parent.

� Using vfork with a large parent process saves CPU time,
but can be dangerous since any memory change occurs
in both processes until execve occurs.

� execve creates no new process or user structure; rather
the text and data of the process are replaced.

Silberschatz, Galvin and Gagne 2002A.32Operating System Concepts

CPU Scheduling

� Every process has a scheduling priority associated with it;
larger numbers indicate lower priority.

� Negative feedback in CPU scheduling makes it difficult
for a single process to take all the CPU time.

� Process aging is employed to prevent starvation.
� When a process chooses to relinquish the CPU, it goes to

sleep on an event.
� When that event occurs, the system process that knows

about it calls wakeup with the address corresponding to
the event, and all processes that had done a sleep on the
same address are put in the ready queue to be run.

Silberschatz, Galvin and Gagne 2002A.33Operating System Concepts

Memory Management

� The initial memory management schemes were
constrained in size by the relatively small memory
resources of the PDP machines on which UNIX was
developed.

� Pre 3BSD system use swapping exclusively to handle
memory contention among processes: If there is too
much contention, processes are swapped out until
enough memory is available.

� Allocation of both main memory and swap space is done
first-fit.

Silberschatz, Galvin and Gagne 2002A.34Operating System Concepts

Memory Management (Cont.)

� Sharable text segments do not need to be swapped;
results in less swap traffic and reduces the amount of
main memory required for multiple processes using the
same text segment.

� The scheduler process (or swapper) decides which
processes to swap in or out, considering such factors as
time idle, time in or out of main memory, size, etc.

� In f.3BSD, swap space is allocated in pieces that are
multiples of power of 2 and minimum size, up to a
maximum size determined by the size or the swap-space
partition on the disk.

Silberschatz, Galvin and Gagne 2002A.35Operating System Concepts

Paging

� Berkeley UNIX systems depend primarily on paging for
memory-contention management, and depend only
secondarily on swapping.

� Demand paging – When a process needs a page and the
page is not there, a page fault tot he kernel occurs, a
frame of main memory is allocated, and the proper disk
page is read into the frame.

� A pagedaemon process uses a modified second-chance
page-replacement algorithm to keep enough free frames
to support the executing processes.

� If the scheduler decides that the paging system is
overloaded, processes will be swapped out whole until
the overload is relieved.

Silberschatz, Galvin and Gagne 2002A.36Operating System Concepts

File System

� The UNIX file system supports two main objects: files and
directories.

� Directories are just files with a special format, so the
representation of a file is the basic UNIX concept.

Silberschatz, Galvin and Gagne 2002A.37Operating System Concepts

Blocks and Fragments

� Most of the file system is taken up by data blocks.
� 4.2BSD uses two block sized for files which have no

indirect blocks:
✦ All the blocks of a file are of a large block size (such as 8K),

except the last.
✦ The last block is an appropriate multiple of a smaller

fragment size (i.e., 1024) to fill out the file.
✦ Thus, a file of size 18,000 bytes would have two 8K blocks

and one 2K fragment (which would not be filled completely).

Silberschatz, Galvin and Gagne 2002A.38Operating System Concepts

Blocks and Fragments (Cont.)

� The block and fragment sizes are set during file-system
creation according to the intended use of the file system:

✦ If many small files are expected, the fragment size should
be small.

✦ If repeated transfers of large files are expected, the basic
block size should be large.

� The maximum block-to-fragment ratio is 8 : 1; the
minimum block size is 4K (typical choices are 4096 : 512
and 8192 : 1024).

Silberschatz, Galvin and Gagne 2002A.39Operating System Concepts

Inodes

� A file is represented by an inode — a record that stores
information about a specific file on the disk.

� The inode also contains 15 pointer to the disk blocks
containing the file’s data contents.

✦ First 12 point to direct blocks.
✦ Next three point to indirect blocks

✔ First indirect block pointer is the address of a single
indirect block — an index block containing the
addresses of blocks that do contain data.

✔ Second is a double-indirect-block pointer, the address of
a block that contains the addresses of blocks that
contain pointer to the actual data blocks.

✔ A triple indirect pointer is not needed; files with as many
as 232 bytes will use only double indirection.

Silberschatz, Galvin and Gagne 2002A.40Operating System Concepts

Directories

� The inode type field distinguishes between plain files and
directories.

� Directory entries are of variable length; each entry
contains first the length of the entry, then the file name
and the inode number.

� The user refers to a file by a path name,whereas the file
system uses the inode as its definition of a file.

✦ The kernel has to map the supplied user path name to an
inode

✦ Directories are used for this mapping.

Silberschatz, Galvin and Gagne 2002A.41Operating System Concepts

Directories (Cont.)

� First determine the starting directory:
✦ If the first character is “/”, the starting directory is the root

directory.

✦ For any other starting character, the starting directory is the
current directory.

� The search process continues until the end of the path
name is reached and the desired inode is returned.

� Once the inode is found, a file structure is allocated to
point to the inode.

� 4.3BSD improved file system performance by adding a
directory name cache to hold recent directory-to-inode
translations.

Silberschatz, Galvin and Gagne 2002A.42Operating System Concepts

Mapping of a File Descriptor to an Inode

� System calls that refer to open files indicate the file is
passing a file descriptor as an argument.

� The file descriptor is used by the kernel to index a table of
open files for the current process.

� Each entry of the table contains a pointer to a file
structure.

� This file structure in turn points to the inode.
� Since the open file table has a fixed length which is only

setable at boot time, there is a fixed limit on the number
of concurrently open files in a system.

Silberschatz, Galvin and Gagne 2002A.43Operating System Concepts

File-System Control Blocks

Silberschatz, Galvin and Gagne 2002A.44Operating System Concepts

Disk Structures

� The one file system that a user ordinarily sees may
actually consist of several physical file systems, each on
a different device.

� Partitioning a physical device into multiple file systems
has several benefits.

✦ Different file systems can support different uses.
✦ Reliability is improved

✦ Can improve efficiency by varying file-system parameters.

✦ Prevents one program form using all available space for a
large file.

✦ Speeds up searches on backup tapes and restoring
partitions from tape.

Silberschatz, Galvin and Gagne 2002A.45Operating System Concepts

Disk Structures (Cont.)

� The root file system is always available on a drive.

� Other file systems may be mounted — i.e., integrated into
the directory hierarchy of the root file system.

� The following figure illustrates how a directory structure is
partitioned into file systems, which are mapped onto
logical devices, which are partitions of physical devices.

Silberschatz, Galvin and Gagne 2002A.46Operating System Concepts

Mapping File System to Physical Devices

Silberschatz, Galvin and Gagne 2002A.47Operating System Concepts

Implementations

� The user interface to the file system is simple and well
defined, allowing the implementation of the file system itself
to be changed without significant effect on the user.

� For Version 7, the size of inodes doubled, the maximum file
and file system sized increased, and the details of free-list
handling and superblock information changed.

� In 4.0BSD, the size of blocks used in the file system was
increased form 512 bytes to 1024 bytes — increased
internal fragmentation, but doubled throughput.

� 4.2BSD added the Berkeley Fast File System, which
increased speed, and included new features.

✦ New directory system calls
✦ truncate calls

✦ Fast File System found in most implementations of UNIX.

Silberschatz, Galvin and Gagne 2002A.48Operating System Concepts

Layout and Allocation Policy

� The kernel uses a <logical device number, inode
number> pair to identify a file.

✦ The logical device number defines the file system involved.

✦ The inodes in the file system are numbered in sequence.

� 4.3BSD introduced the cylinder group — allows
localization of the blocks in a file.

✦ Each cylinder group occupies one or more consecutive
cylinders of the disk, so that disk accesses within the
cylinder group require minimal disk head movement.

✦ Every cylinder group has a superblock, a cylinder block, an
array of inodes, and some data blocks.

Silberschatz, Galvin and Gagne 2002A.49Operating System Concepts

4.3BSD Cylinder Group

Silberschatz, Galvin and Gagne 2002A.50Operating System Concepts

I/O System

� The I/O system hides the peculiarities of I/O devices from
the bulk of the kernel.

� Consists of a buffer caching system, general device driver
code, and drivers for specific hardware devices.

� Only the device driver knows the peculiarities of a specific
device.

Silberschatz, Galvin and Gagne 2002A.51Operating System Concepts

4.3 BSD Kernel I/O Structure

Silberschatz, Galvin and Gagne 2002A.52Operating System Concepts

Block Buffer Cache

� Consist of buffer headers, each of which can point to a
piece of physical memory, as well as to a device number
and a block number on the device.

� The buffer headers for blocks not currently in use are kept
in several linked lists:

✦ Buffers recently used, linked in LRU order (LRU list).
✦ Buffers not recently used, or without valid contents (AGE

list).

✦ EMPTY buffers with no associated physical memory.

� When a block is wanted from a device, the cache is
searched.

� If the block is found it is used, and no I/O transfer is
necessary.

� If it is not found, a buffer is chosen from the AGE list, or
the LRU list if AGE is empty.

Silberschatz, Galvin and Gagne 2002A.53Operating System Concepts

Block Buffer Cache (Cont.)

� Buffer cache size effects system performance; if it is large
enough, the percentage of cache hits can be high and
the number of actual I/O transfers low.

� Data written to a disk file are buffered in the cache, and
the disk driver sorts its output queue according to disk
address — these actions allow the disk driver to minimize
disk head seeks and to write data at times optimized for
disk rotation.

Silberschatz, Galvin and Gagne 2002A.54Operating System Concepts

Raw Device Interfaces

� Almost every block device has a character interface, or
raw device interface — unlike the block interface, it
bypasses the block buffer cache.

� Each disk driver maintains a queue of pending transfers.
� Each record in the queue specifies:

✦ whether it is a read or a write

✦ a main memory address for the transfer
✦ a device address for the transfer

✦ a transfer size

� It is simple to map the information from a block buffer to
what is required for this queue.

Silberschatz, Galvin and Gagne 2002A.55Operating System Concepts

C-Lists

� Terminal drivers use a character buffering system which
involves keeping small blocks of characters in linked lists.

� A write system call to a terminal enqueues characters on
a list for the device. An initial transfer is started, and
interrupts cause dequeueing of characters and further
transfers.

� Input is similarly interrupt driven.
� It is also possible to have the device driver bypass the

canonical queue and return characters directly form the
raw queue — raw mode (used by full-screen editors and
other programs that need to react to every keystroke).

Silberschatz, Galvin and Gagne 2002A.56Operating System Concepts

Interprocess Communication

� The pipe is the IPC mechanism most characteristic of
UNIX.

✦ Permits a reliable unidirectional byte stream between two
processes.

✦ A benefit of pipes small size is that pipe data are seldom
written to disk; they usually are kept in memory by the
normal block buffer cache.

� In 4.3BSD, pipes are implemented as a special case of
the socket mechanism which provides a general interface
not only to facilities such as pipes, which are local to one
machine, but also to networking facilities.

� The socket mechanism can be used by unrelated
processes.

Silberschatz, Galvin and Gagne 2002A.57Operating System Concepts

Sockets

� A socket is an endpont of communication.
� An in-use socket it usually bound with an address; the

nature of the address depends on the communication
domain of the socket.

� A characteristic property of a domain is that processes
communication in the same domain use the same
address format.

� A single socket can communicate in only one domain —
the three domains currently implemented in 4.3BSD are:

✦ the UNIX domain (AF_UNIX)
✦ the Internet domain (AF_INET)

✦ the XEROX Network Service (NS) domain (AF_NS)

Silberschatz, Galvin and Gagne 2002A.58Operating System Concepts

Socket Types

� Stream sockets provide reliable, duplex, sequenced data
streams. Supported in Internet domain by the TCP
protocol. In UNIX domain, pipes are implemented as a pair
of communicating stream sockets.

� Sequenced packet sockets provide similar data streams,
except that record boundaries are provided. Used in
XEROX AF_NS protocol.

� Datagram sockets transfer messages of variable size in
either direction. Supported in Internet domain by UDP
protocol

� Reliably delivered message sockets transfer messages
that are guaranteed to arrive. Currently unsupported.

� Raw sockets allow direct access by processes to the
protocols that support the other socket types; e.g., in the
Internet domain, it is possible to reach TCP, IP beneath
that, or a deeper Ethernet protocol. Useful for developing
new protocols.

Silberschatz, Galvin and Gagne 2002A.59Operating System Concepts

Socket System Calls

� The socket call creates a socket; takes as arguments
specifications of the communication domain, socket
type, and protocol to be used and returns a small integer
called a socket descriptor.

� A name is bound to a socket by the bind system call.
� The connect system call is used to initiate a connection.
� A server process uses socket to create a socket and

bind to bind the well-known address of its service to that
socket.

✦ Uses listen to tell the kernel that it is ready to accept
connections from clients.

✦ Uses accept to accept individual connections.

✦ Uses fork to produce a new process after the accept to
service the client while the original server process
continues to listen for more connections.

Silberschatz, Galvin and Gagne 2002A.60Operating System Concepts

Socket System Calls (Cont.)

� The simplest way to terminate a connection and to
destroy the associated socket is to use the close system
call on its socket descriptor.

� The select system call can be used to multiplex data
transfers on several file descriptors and /or socket
descriptors

Silberschatz, Galvin and Gagne 2002A.61Operating System Concepts

Network Support

� Networking support is one of the most important features
in 4.3BSD.

� The socket concept provides the programming
mechanism to access other processes, even across a
network.

� Sockets provide an interface to several sets of protocols.
� Almost all current UNIX systems support UUCP.
� 4.3BSD supports the DARPA Internet protocols UDP,

TCP, IP, and ICMP on a wide range of Ethernet, token-
ring, and ARPANET interfaces.

� The 4.3BSD networking implementation, and to a certain
extent the socket facility, is more oriented toward the
ARPANET Reference Model (ARM).

Silberschatz, Galvin and Gagne 2002A.62Operating System Concepts

Network Reference models and Layering

Appendix A

THE
FREEBSD
SYSTEM

Although operating-system concepts can be considered in purely theoretical
terms, it is often useful to see how they are implemented in practice. This
chapter presents an in-depth examination of the FreeBSD operating system, a
version of UNIX, as an example of the various concepts presented in this book.
By examining a complete, real system, we can see how the various concepts
discussed in this book relate both to one another and to practice. We consider
first a brief history of UNIX, and present the system’s user and programmer
interfaces. Then, we discuss the internal data structures and algorithms used
by the UNIX kernel to support the user–programmer interface.

A.1 History

The first version of UNIX was developed in 1969 by Ken Thompson of the
Research Group at Bell Laboratories to use an otherwise idle PDP-7. He was
soon joined by Dennis Ritchie. Thompson, Ritchie, and other members of the
Research Group produced the early versions of UNIX.

Ritchie had previously worked on the MULTICS project, and MULTICS had
a strong influence on the newer operating system. Even the name UNIX is
merely a pun on MULTICS. The basic organization of the file system, the idea
of the command interpreter (the shell) as a user process, the use of a separate
process for each command, the original line-editing characters (# to erase the
last character and @ to erase the entire line), and numerous other features came

807

808 Appendix A The FreeBSD System

directly from MULTICS. Ideas from various other operating systems, such as
from MIT’s CTSS and the XDS-940 system, were also used.

Ritchie and Thompson worked quietly on UNIX for many years. Their
work on the first version allowed them to move it to a PDP-11/20, for a second
version. A third version resulted from their rewriting most of the operating
system in the systems-programming language C, instead of the previously used
assembly language. C was developed at Bell Laboratories to support UNIX.
UNIX was also moved to larger PDP-11 models, such as the 11/45 and 11/70.
Multiprogramming and other enhancements were added when it was rewritten
in C and moved to systems (such as the 11/45) that had hardware support for
multiprogramming.

As UNIX developed, it became widely used within Bell Laboratories and
gradually spread to a few universities. The first version widely available out-
side Bell Laboratories was Version 6, released in 1976. (The version number for
early UNIX systems corresponds to the edition number of the UNIX Program-
mer’s Manual that was current when the distribution was made; the code and
the manuals were revised independently.)

In 1978, Version 7 was distributed. This UNIX system ran on the PDP-11/70
and the Interdata 8/32, and is the ancestor of most modern UNIX systems. In
particular, it was soon ported to other PDP-11 models and to the VAX computer
line. The version available on the VAX was known as 32V. Research has
continued since then.

After the distribution of Version 7 in 1978, the UNIX Support Group (USG)
assumed administrative control and responsibility from the Research Group for
distributions of UNIX within AT&T, the parent organization for Bell Laborato-
ries. UNIX was becoming a product, rather than simply a research tool. The
Research Group continued to develop their own version of UNIX, however, to
support their own internal computing. Next came Version 8, which included a
facility called the stream I/O system that allows flexible configuration of kernel
IPC modules. It also contained RFS, a remote file system similar to Sun’s NFS.
Next came Versions 9 and 10 (the latter version, released in 1989, is available
only within Bell Laboratories).

USG mainly provided support for UNIX within AT&T. The first external
distribution from USG was System III, in 1982. System III incorporated features
of Version 7, and 32V, and also of several UNIX systems developed by groups
other than Research. Features of UNIX/RT, a real-time UNIX system, as well
as numerous portions of the Programmer’s Work Bench (PWB) software tools
package were included in System III.

USG released System V in 1983; it is largely derived from System III.
The divestiture of the various Bell operating companies from AT&T has left
AT&T in a position to market System V aggressively. USG was restructured
as the UNIX System Development Laboratory (USDL), which released UNIX
System V Release 2 (V.2) in 1984. UNIX System V Release 2, Version 4 (V.2.4)
added a new implementation of virtual memory with copy-on-write paging

A.1 History 809

and shared memory. USDL was in turn replaced by AT&T Information Systems
(ATTIS), which distributed System V Release 3 (V.3) in 1987. V.3 adapts the V8
implementation of the stream I/O system and makes it available as STREAMS.
It also includes RFS, an NFS-like remote file system.

The small size, modularity, and clean design of early UNIX systems led to
UNIX-based work at numerous other computer-science organizations, such as
at Rand, BBN, the University of Illinois, Harvard, Purdue, and even DEC. The
most influential of the non-Bell Laboratories and non–AT&T UNIX development
groups, however, has been the University of California at Berkeley.

The first Berkeley VAX UNIX work was the addition in 1978 of virtual
memory, demand paging, and page replacement to 32V; this work was done by
Bill Joy and Ozalp Babaoglu to produce 3BSD UNIX. This version was the first
implementation of any of these facilities on any UNIX system. The large virtual-
memory space of 3BSD allowed the development of very large programs, such
as Berkeley’s own Franz LISP. The memory-management work convinced the
Defense Advanced Research Projects Agency (DARPA) to fund Berkeley for the
development of a standard UNIX system for government use; 4BSD UNIX was
the result.

The 4BSD work for DARPA was guided by a steering committee that
included many notable people from the UNIX and networking communities.
One of the goals of this project was to provide support for the DARPA Internet
networking protocols (TCP/IP). This support was provided in a general man-
ner. It is possible in 4.2BSD to communicate uniformly among diverse network
facilities, including local-area networks (such as Ethernets and token rings)
and wide-area networks (such as NSFNET). This implementation was the most
important reason for the current popularity of these protocols. It was used as
the basis for the implementations of many vendors of UNIX computer systems,
and even other operating systems. It permitted the Internet to grow from 60
connected networks in 1984 to more than 8000 networks and an estimated 10
million users in 1993.

In addition, Berkeley adapted many features from contemporary operating
systems to improve the design and implementation of UNIX. Many of the
terminal line-editing functions of the TENEX (TOPS-20) operating system were
provided by a new terminal driver. A new user interface (the C Shell), a
new text editor (ex/vi), compilers for Pascal and LISP, and many new systems
programs were written at Berkeley. For 4.2BSD, certain efficiency improvements
were inspired by the VMS operating system.

UNIX software from Berkeley is released in Berkeley Software Distributions.
It is convenient to refer to the Berkeley VAX UNIX systems following 3BSD
as 4BSD, although there were actually several specific releases, most notably
4.1BSD and 4.2BSD. The generic numbers BSD and 4BSD are used for the PDP-11
and VAX distributions of Berkeley UNIX. 4.2BSD, first distributed in 1983, was
the culmination of the original Berkeley DARPA UNIX project. 2.9BSD is the
equivalent version for PDP-11 systems.

810 Appendix A The FreeBSD System

In 1986, 4.3BSD was released. It was so similar to 4.2BSD that its manuals
described 4.2BSD more comprehensively than the 4.2BSD manuals did. It did
include numerous internal changes, however, including bug fixes and perfor-
mance improvements. Some new facilities also were added, including support
for the Xerox Network System protocols.

4.3BSD Tahoe was the next version, released in 1988. It included vari-
ous new developments, such as improved networking congestion control and
TCP/IP performance. Also, disk configurations were separated from the device
drivers, and are now read off the disks themselves. Expanded time-zone sup-
port is also included. 4.3BSD Tahoe was actually developed on and for the CCI
Tahoe system (Computer Console, Inc., Power 6 computer), rather than for the
usual VAX base. The corresponding PDP-11 release is 2.10.1BSD, which is dis-
tributed by the USENIX Association, which also publishes the 4.3BSD manuals.
The 4.32BSD Reno release saw the inclusion of an implementation of ISO/OSI
networking.

The last Berkeley release, 4.4BSD, was finalized in June of 1993. It includes
new X.25 networking support, and POSIX standard compliance. It also has a
radically new file system organization, with a new virtual file system interface
and support for stackable file systems, allowing file systems to be layered on top
of each other for easy inclusion of new features. An implementation of NFS
is also included in the release (Chapter 16), as is a new log-based file system
(see Chapter 14). The 4.4BSD virtual memory system is derived from Mach
(described in Section 22.9). Several other changes, such as enhanced security
and improved kernel structure, are also included. With the release of version
4.4, Berkeley has halted its research efforts.

4BSD was the operating system of choice for VAXes from its initial release
(1979) until the release of Ultrix, DEC’s BSD implementation. 4BSD is still the best
choice for many research and networking installations. Many organizations
would buy a 32V license and order 4BSD from Berkeley without even bothering
to get a 32V tape.

The current set of UNIX operating systems is not limited to those by Bell
Laboratories (which is currently owned by Lucent Technology), and Berkeley,
however. Sun Microsystems helped popularize the BSD flavor of UNIX by
shipping it on their workstations. As UNIX has grown in popularity, it has been
moved to many different computers and computer systems. A wide variety of
UNIX, and UNIX-like, operating systems have been created. DEC supports its
UNIX (called Ultrix) on its workstations and is replacing Ultrix with another
UNIX-derived operating system, OSF/1; Microsoft rewrote UNIX for the Intel
8088 family and called it XENIX, and its new Windows NT operating system is
heavily influenced by UNIX; IBM has UNIX (AIX) on its PCs, workstations, and
mainframes. In fact, UNIX is available on almost all general-purpose computers;
it runs on personal computers, workstations, minicomputers, mainframes, and
supercomputers, from Apple Macintosh IIs to Cray IIs. Because of its wide
availability, it is used in environments ranging from academic to military to

A.1 History 811

manufacturing process control. Most of these systems are based on Version 7,
System III, 4.2BSD, or System V.

The wide popularity of UNIX with computer vendors has made UNIX the
most portable of operating systems, and has made it possible for users to expect
a UNIX environment independent of any specific computer manufacturer. But
the large number of implementations of the system has led to remarkable
variation in the programming and user interfaces distributed by the vendors.
For true vendor independence, application-program developers need consis-
tent interfaces. Such interfaces would allow all “UNIX” applications to run on
all UNIX systems, which is certainly not the current situation. This issue has
become important as UNIX has become the preferred program-development
platform for applications ranging from databases to graphics and networking,
and has led to a strong market demand for UNIX standards.

There are several standardization projects underway, starting with the
/usr/group 1984 Standard sponsored by the UniForum industry user’s group.
Since then, many official standards bodies have continued the effort, including
IEEE and ISO (the POSIX standard). The X/Open Group international consor-
tium completed XPG3, a Common Application Environment, which subsumes
the IEEE interface standard. Unfortunately, XPG3 is based on a draft of the ANSI
C standard, rather than the final specification, and therefore needs to be redone.
The XPG4 is due out in 1993. In 1989, the ANSI standards body standardized
the C programming language, producing an ANSI C specification that vendors
were quick to adopt. As these projects continue, the variant flavors of UNIX
will converge and there will be one programming interface to UNIX, allow-
ing UNIX to become even more popular. There are in fact two separate sets
of powerful UNIX vendors working on this problem: the AT&T-guided UNIX
International (UI) and the Open Software Foundation (OSF) have both agreed
to follow the POSIX standard. Recently, many of the vendors involved in those
two groups have agreed on further standardization (the COSE agreement) on
the Motif window environment, and ONC+ (which includes Sun RPC and NFS)
and DCE network facilities (which includes AFS and an RPC package).

AT&T replaced its ATTIS group in 1989 with the UNIX Software Organization
(USO), which shipped the first merged UNIX, System V Release 4. This system
combines features from System V, 4.3BSD, and Sun’s SunOS, including long file
names, the Berkeley file system, virtual memory management, symbolic links,
multiple access groups, job control, and reliable signals; it also conforms to the
published POSIX standard, POSIX.1. After USO produced SVR4, it became an
independent AT&T subsidiary named Unix System Laboratories (USL); in 1993,
it was purchased by Novell, Inc.

Figure A.1 summarizes the relationships among the various versions of
UNIX.

The UNIX system has grown from a personal project of two Bell Laborato-
ries employees to an operating system being defined by multinational standard-
ization bodies. Yet this system is still of interest to academia. We believe that

812 Appendix A The FreeBSD System

1969

1973

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

USG / USDL / ATTIS
DSG / USO / USL

Bell Labs
Research

Berkley
Software

Distributions

First Edition

Fifth Edition

Sixth Edition

Seventh Edition

PWB

3.0

3.0.1

4.0.1

5.0

5.2

Chorus

Chorus
V3

UNIX
System V
Release 4

System V
Release 3

System V
Release 2

System V

System III

MERT CB UNIX

UNIX/RT

XENIX

XENIX 3

XENIX 5

OSF/1

Solaris

Solaris 2

SunOS
4

SunOS
3Mach

SunOS

Eighth
Edition

Ninth
Edition

Tenth
Edition

Plan 9

4.4BSD

4.3BSD
Reno

4.3BSD
Tahoe

4.3BSD
2.10BSD

4.2BSD
2.9BSD

4.1cBSD

4.1aBSD
2.8BSD

4.1BSD

2BSD

4.0BSD

3BSD

1BSD

32V

PDP-11

VAX

VAX

PDP-11

Figure A.1 History of UNIX versions.

UNIX has become and will remain an important part of operating-system theory
and practice. UNIX is an excellent vehicle for academic study. For example, the
Tunis operating system, the Xinu operating system, and the Minix operating
system are based on the concepts of UNIX, but were developed explicitly for
classroom study. There is a plethora of ongoing UNIX-related research sys-
tems, including Mach, Chorus, Comandos, and Roisin. The original developers,

A.2 Design Principles 813

Ritchie and Thompson, were honored in 1983 by the Association for Computing
Machinery Turing award for their work on UNIX.

The specific UNIX version used in this chapter is the Intel version of FreeBSD.
This system is used because it implements many interesting operating-system
concepts, such as demand paging with clustering, and networking. The
FreeBSD project began in early 1993 to produce a snapshot of 386BSD to solve
problems that were unable to be resolved using the existing patch mechanism.
386BSD was derived from 4.3BSD-Lite (Net/2) and was originally released in
June 1992 by William Jolitz. FreeBSD (coined by David Greenman) 1.0 was
released in December 1993. FreeBSD 1.1 was released in May 1994 and both
versions were based on 4.3BSD-Lite. Legal issues between UCB and Novell
required that 4.3BSD-Lite code could no longer be used, so the final 4.3BSD-Lite
Release was made in July 1994 (FreeBSD 1.1.5.1).

FreeBSD was reinvented based on the 4.4BSD-Lite code base, which was
incomplete, releasing FreeBSD 2.0 in November 1994. Later releases include
releases 2.0.5 in June 1995, 2.1.5 in August 1996, 2.1.7.1 in February 1997, 2.2.1
in April 1997, 2.2.8 in November 1998, 3.0 in October 1998, 3.1 in February 1999,
3.2 in May 1999, 3.3 in September 1999, 3.4 in December 1999, 3.5 in June 2000,
4.0 in March 2000, 4.1 in July 2000 and 4.2 in November 2000.

The goal of the FreeBSD project is to provide software that may be used
for any purpose with no strings attached. The idea is that the code will
get the widest possible use and provide the most benefit. Fundamentally,
it is the same as described in McKusick et al. [1984] with the addition of
a merged virtual memory and filesystem buffer cache, kernel queues, and
soft filesystem updates. At the present, it runs primarily on Intel platforms,
although Alpha platforms are supported. Work is underway to port to other
processor platforms as well.

A.2 Design Principles

UNIX was designed to be a time-sharing system. The standard user interface
(the shell) is simple and can be replaced by another, if desired. The file system
is a multilevel tree, which allows users to create their own subdirectories. Each
user data file is simply a sequence of bytes.

Disk files and I/O devices are treated as similarly as possible. Thus, device
dependencies and peculiarities are kept in the kernel as much as possible; even
in the kernel, most of them are confined to the device drivers.

UNIX supports multiple processes. A process can easily create new pro-
cesses. CPU scheduling is a simple priority algorithm. FreeBSD uses demand
paging as a mechanism to support memory-management and CPU-scheduling
decisions. Swapping is used if a system is suffering from excess paging.

Because UNIX was originated first by one programmer, Ken Thompson, and
then by another, Dennis Ritchie, as a system for their own convenience, it was

814 Appendix A The FreeBSD System

small enough to understand. Most of the algorithms were selected for simplicity,
not for speed or sophistication. The intent was to have the kernel and libraries
provide a small set of facilities that was sufficiently powerful to allow a person
to build a more complex system if one were needed. UNIX’s clean design has
resulted in many imitations and modifications.

Although the designers of UNIX had a significant amount of knowledge
about other operating systems, UNIX had no elaborate design spelled out before
its implementation. This flexibility appears to have been one of the key factors
in the development of the system. Some design principles were involved,
however, even though they were not made explicit at the outset.

The UNIX system was designed by programmers for programmers. Thus,
it has always been interactive, and facilities for program development have
always been a high priority. Such facilities include the program make (which can
be used to check to see which of a collection of source files for a program need to
be compiled, and then to do the compiling) and the Source Code Control System
(SCCS) (which is used to keep successive versions of files available without
having to store the entire contents of each step). The primary version control
system used by freebsd is the Concurrent Versions System (CVS) due to the large
number of developers operating on and using the code.

The operating system is written mostly in C, which was developed to
support UNIX, since neither Thompson nor Ritchie enjoyed programming in
assembly language. The avoidance of assembly language was also necessary
because of the uncertainty about the machine or machines on which UNIX
would be run. It has greatly simplified the problems of moving UNIX from
one hardware system to another.

From the beginning, UNIX development systems have had all the UNIX
sources available on-line, and the developers have used the systems under
development as their primary systems. This pattern of development has greatly
facilitated the discovery of deficiencies and their fixes, as well as of new possi-
bilities and their implementations. It has also encouraged the plethora of UNIX
variants existing today, but the benefits have outweighed the disadvantages:
if something is broken, it can be fixed at a local site; there is no need to wait
for the next release of the system. Such fixes, as well as new facilities, may be
incorporated into later distributions.

The size constraints of the PDP-11 (and earlier computers used for UNIX)
have forced a certain elegance. Where other systems have elaborate algorithms
for dealing with pathological conditions, UNIX just does a controlled crash
called panic. Instead of attempting to cure such conditions, UNIX tries to prevent
them. Where other systems would use brute force or macro-expansion, UNIX
mostly has had to develop more subtle, or at least simpler, approaches.

These early strengths of UNIX produced much of its popularity, which in
turn produced new demands that challenged those strengths. UNIX was used
for tasks such as networking, graphics, and real-time operation, which did not
always fit into its original text-oriented model. Thus, changes were made to

A.3 Programmer Interface 815

(the users)

shells and commands
compilers and interpreters

system libraries

system-call interface to the kernel

kernel interface to the hardware

file system
swapping block I/O

system
disk and tape drivers

CPU scheduling
page replacement
demand paging
virtual memory

signals terminal
handling

character I/O system
terminal drivers

device controllers
disks and tapes

memory controllers
physical memory

terminal controllers
terminals

Figure A.2 4.4BSD layer structure.

certain internal facilities and new programming interfaces were added. These
new facilities, and others—particularly window interfaces—required large
amounts of code to support them, radically increasing the size of the system.
For instance, networking and windowing both doubled the size of the system.
This pattern in turn pointed out the continued strength of UNIX—whenever a
new development occurred in the industry, UNIX could usually absorb it, but
still remain UNIX.

A.3 Programmer Interface

As do most operating systems, UNIX consists of two separable parts: the kernel
and the systems programs. We can view the UNIX operating system as being
layered, as shown in Figure A.2. Everything below the system-call interface and
above the physical hardware is the kernel. The kernel provides the file system,
CPU scheduling, memory management, and other operating-system functions
through system calls. Systems programs use the kernel-supported system calls
to provide useful functions, such as compilation and file manipulation.

System calls define the programmer interface to UNIX; the set of systems
programs commonly available defines the user interface. The programmer and
user interface define the context that the kernel must support.

Most systems programs are written in C, and the UNIX Programmer’s Manual
presents all system calls as C functions. A system program written in C for
FreeBSD on the Pentium can generally be moved to an Alpha freebsd system and
simply recompiled, even though the two systems are quite different. The details

816 Appendix A The FreeBSD System

of system calls are known only to the compiler. This feature is a major reason
for the portability of UNIX programs.

System calls for UNIX can be roughly grouped into three categories: file
manipulation, process control, and information manipulation. In Chapter 3,
we listed a fourth category, device manipulation, but since devices in UNIX are
treated as (special) files, the same system calls support both files and devices
(although there is an extra system call for setting device parameters).

A.3.1 File Manipulation

A file in UNIX is a sequence of bytes. Different programs expect various levels
of structure, but the kernel does not impose a structure on files. For instance,
the convention for text files is lines of ASCII characters separated by a single
newline character (which is the linefeed character in ASCII), but the kernel
knows nothing of this convention.

Files are organized in tree-structured directories. Directories are themselves
files that contain information on how to find other files. A path name to a file
is a text string that identifies a file by specifying a path through the directory
structure to the file. Syntactically, it consists of individual file-name elements
separated by the slash character. For example, in /usr/local/font, the first slash
indicates the root of the directory tree, called the root directory. The next
element, usr, is a subdirectory of the root, local is a subdirectory of usr, and
font is a file or directory in the directory local. Whether font is an ordinary file or
a directory cannot be determined from the path-name syntax.

The UNIX file system has both absolute path names and relative path names.
Absolute path names start at the root of the file system and are distinguished
by a slash at the beginning of the path name; /usr/local/font is an absolute path
name. Relative path names start at the current directory, which is an attribute of
the process accessing the path name. Thus, local/font indicates a file or directory
named font in the directory local in the current directory, which might or might
not be /usr.

A file may be known by more than one name in one or more directories.
Such multiple names are known as links, and all links are treated equally by
the operating system. FreeBSD also supports symbolic links, which are files
containing the path name of another file. The two kinds of links are also known
as hard links and soft links. Soft (symbolic) links, unlike hard links, may point to
directories and may cross file-system boundaries.

The file name “.” in a directory is a hard link to the directory itself. The file
name “..” is a hard link to the parent directory. Thus, if the current directory is
/user/jlp/programs, then ../bin/wdf refers to /user/jlp/bin/wdf.

Hardware devices have names in the file system. These device special files
or special files are known to the kernel as device interfaces, but are nonetheless
accessed by the user by much the same system calls as are other files.

A.3 Programmer Interface 817

vmunix

dev lp0

console

. . .

bin csh

sh

. . .

libc.a

. . .
lib

group
etc

. . .

passwd

init

tmp

user avi

jlp

. . .

bin troff

spell

. . .

ucb man

telnet

. . .

local lib

bin

. . .

include

lib
troff

tmac

. . .

tmp

. . .

/ usr

Figure A.3 Typical UNIX directory structure.

818 Appendix A The FreeBSD System

Figure A.3 shows a typical UNIX file system. The root (/) normally contains
a small number of directories as well as /kernel, the binary boot image of the
operating system; /dev contains the device special files, such as /dev/console,
/dev/lp0, /dev/mt0, and so on; /bin contains the binaries of the essential UNIX
systems programs. Other binaries may be in /usr/bin (for applications systems
programs, such as text formatters), /usr/compat for programs from other oper-
ating systems such as Linux or /usr/local/bin (for systems programs written at
the local site). Library files—such as the C, Pascal, and FORTRAN subroutine
libraries—are kept in /lib (or /usr/lib or /usr/local/lib).

The files of users themselves are stored in a separate directory for each
user, typically in /usr. Thus, the user directory for carol would normally be
in /usr/carol. For a large system, these directories may be further grouped to
ease administration, creating a file structure with /usr/prof/avi and /usr/staff/carol.
Administrative files and programs, such as the password file, are kept in /etc.
Temporary files can be put in /tmp, which is normally erased during system
boot, or in /usr/tmp.

Each of these directories may have considerably more structure. For exam-
ple, the font-description tables for the troff formatter for the Merganthaler 202
typesetter are kept in /usr/lib/troff/dev202. All the conventions concerning the
location of specific files and directories have been defined by programmers and
their programs; the operating-system kernel needs only /etc/init, which is used
to initialize terminal processes, to be operable.

System calls for basic file manipulation are creat, open, read, write, close,
unlink, and trunc. The creat system call, given a path name, creates an (empty)
file (or truncates an existing one). An existing file is opened by the open system
call, which takes a path name and a mode (such as read, write, or read–write)
and returns a small integer, called a file descriptor. A file descriptor may then
be passed to a read or write system call (along with a buffer address and the
number of bytes to transfer) to perform data transfers to or from the file. A file
is closed when its file descriptor is passed to the close system call. The trunc
call reduces the length of a file to 0.

A file descriptor is an index into a small table of open files for this process.
Descriptors start at 0 and seldom get higher than 6 or 7 for typical programs,
depending on the maximum number of simultaneously open files.

Each read or write updates the current offset into the file, which is associ-
ated with the file-table entry and is used to determine the position in the file
for the next read or write. The lseek system call allows the position to be reset
explicitly. It also allows the creation of sparse files (files with “holes” in them).
The dup and dup2 system calls can be used to produce a new file descriptor
that is a copy of an existing one. The fcntl system call can also do that, and in
addition can examine or set various parameters of an open file. For example, it
can make each succeeding write to an open file append to the end of that file.
There is an additional system call, ioctl, for manipulating device parameters. It
can set the baud rate of a serial port, or rewind a tape, for instance.

A.3 Programmer Interface 819

Information about the file (such as its size, protection modes, owner, and so
on) can be obtained by the stat system call. Several system calls allow some of
this information to be changed: rename (change file name), chmod (change the
protection mode), and chown (change the owner and group). Many of these
system calls have variants that apply to file descriptors instead of file names.
The link system call makes a hard link for an existing file, creating a new name
for an existing file. A link is removed by the unlink system call; if it is the last
link, the file is deleted. The symlink system call makes a symbolic link.

Directories are made by the mkdir system call and are deleted by rmdir.
The current directory is changed by cd.

Although it is possible to use the standard file calls on directories, it is
inadvisable to do so, since directories have an internal structure that must be
preserved. Instead, another set of system calls is provided to open a directory,
to step through each file entry within the directory, to close the directory, and to
perform other functions; these are opendir, readdir, closedir, and others.

A.3.2 Process Control

A process is a program in execution. Processes are identified by their process
identifier, which is an integer. A new process is created by the fork system
call. The new process consists of a copy of the address space of the original
process (the same program and the same variables with the same values). Both
processes (the parent and the child) continue execution at the instruction after
the fork with one difference: The return code for the fork is zero for the new
(child) process, whereas the (nonzero) process identifier of the child is returned
to the parent.

Typically, the execve system call is used after a fork by one of the two
processes to replace that process’ virtual memory space with a new program.
The execve system call loads a binary file into memory (destroying the memory
image of the program containing the execve system call) and starts its execution.

A process may terminate by using the exit system call, and its parent
process may wait for that event by using the wait system call. If the child
process crashes, the system simulates the exit call. The wait system call
provides the process id of a terminated child so that the parent can tell which
of possibly many children terminated. A second system call, wait3, is similar to
wait but also allows the parent to collect performance statistics about the child.
Between the time the child exits, and the time the parent completes one of the
wait system calls, the child is defunct. A defunct process can do nothing, but
exists merely so that the parent can collect its status information. If the parent
process of a defunct process exits before a child, the defunct process is inherited
by the init process (which in turn waits on it) and becomes a zombie process. A
typical use of these facilities is shown in Figure A.4.

The simplest form of communication between processes is by pipes, which
may be created before the fork, and whose endpoints are then set up between

820 Appendix A The FreeBSD System

the fork and the execve. A pipe is essentially a queue of bytes between two
processes. The pipe is accessed by a file descriptor, like an ordinary file. One
process writes into the pipe, and the other reads from the pipe. The size of
the original pipe system was fixed by the system. With FreeBSD , pipes are
implemented on top of the socket system, which has variable-sized buffers.
Reading from an empty pipe or writing into a full pipe causes the process to
be blocked until the state of the pipe changes. Special arrangements are needed
for a pipe to be placed between a parent and child (so only one is reading and
one is writing).

All user processes are descendants of one original process, called init. Each
terminal port available for interactive use has a getty process forked for it by
init. The getty process initializes terminal line parameters and waits for a user’s
login name, which it passes through an execve as an argument to a login process.
The login process collects the user’s password, encrypts the password, and
compares the result to an encrypted string taken from the file /etc/passwd. If
the comparison is successful, the user is allowed to log in. The login process
executes a shell, or command interpreter, after setting the numeric user identifier
of the process to that of the user logging in. (The shell and the user identifier are
found in /etc/passwd by the user’s login name.) It is with this shell that the user
ordinarily communicates for the rest of the login session; the shell itself forks
subprocesses for the commands the user tells it to execute.

The user identifier is used by the kernel to determine the user’s permissions
for certain system calls, especially those involving file accesses. There is also a
group identifier, which is used to provide similar privileges to a collection of
users. In FreeBSD a process may be in several groups simultaneously. The
login process puts the shell in all the groups permitted to the user by the files
/etc/passwd and /etc/group.

There are actually two user identifiers used by the kernel: the effective user
identifier is the identifier used to determine file access permissions. If the file
of a program being loaded by an execve has the setuid bit set in its inode, the
effective user identifier of the process is set to the user identifier of the owner of
the file, whereas the real user identifier is left as it was. This scheme allows certain
processes to have more than ordinary privileges while still being executable by

shell process parent process shell process

child process zombie process

execve
program

program executes
exit

waitfork

Figure A.4 A shell forks a subprocess to execute a program.

A.3 Programmer Interface 821

ordinary users. The setuid idea was patented by Dennis Ritchie (U.S. Patent
4,135,240) and is one of the distinctive features of UNIX. There is a similar setgid
bit for groups. A process may determine its real and effective user identifier
with the getuid and geteuid calls, respectively. The getgid and getegid calls
determine the process’ real and effective group identifier, respectively. The rest
of a process’ groups may be found with the getgroups system call.

A.3.3 Signals

Signals are a facility for handling exceptional conditions similar to software
interrupts. There are 20 different signals, each corresponding to a distinct
condition. A signal may be generated by a keyboard interrupt, by an error
in a process (such as a bad memory reference), or by a number of asynchronous
events (such as timers or job-control signals from the shell). Almost any signal
may also be generated by the kill system call.

The interrupt signal, SIGINT, is used to stop a command before that com-
mand completes. It is usually produced by the ˆC character (ASCII 3). As of
4.2BSD, the important keyboard characters are defined by a table for each termi-
nal and can be redefined easily. The quit signal, SIGQUIT, is usually produced
by the ˆbs character (ASCII 28). The quit signal both stops the currently execut-
ing program and dumps its current memory image to a file named core in the
current directory. The core file can be used by debuggers. SIGILL is produced
by an illegal instruction and SIGSEGV by an attempt to address memory outside
of the legal virtual-memory space of a process.

Arrangements can be made either for most signals to be ignored (to have
no effect), or for a routine in the user process (a signal handler) to be called. A
signal handler may safely do one of two things before returning from catching a
signal: call the exit system call, or modify a global variable. There is one signal
(the kill signal, number 9, SIGKILL) that cannot be ignored or caught by a signal
handler. SIGKILL is used, for example, to kill a runaway process that is ignoring
other signals such as SIGINT or SIGQUIT.

Signals can be lost: If another signal of the same kind is sent before a
previous signal has been accepted by the process to which it is directed, the first
signal will be overwritten and only the last signal will be seen by the process.
In other words, a call to the signal handler tells a process that there has been at
least one occurance of the signal. Also, there is no relative priority among UNIX
signals. If two different signals are sent to the same process at the same time, it
is indeterminate which one the process will receive first.

Signals were originally intended to deal with exceptional events. As is
true of the use of most other features in UNIX, however, signal use has steadily
expanded. 4.1BSD introduced job control, which uses signals to start and stop
subprocesses on demand. This facility allows one shell to control multiple
processes: starting, stopping, and backgrounding them as the user wishes. The
SIGWINCH signal, invented by Sun Microsystems, for informing a process that

822 Appendix A The FreeBSD System

the window in which output is being displayed has changed size. Signals are
also used to deliver urgent data from network connections.

Users also wanted more reliable signals, and a bug fix in an inherent race
condition in the old signals implementation. Thus, 4.2BSD also brought with
it a race-free, reliable, separately implemented signal capability. It allows
individual signals to be blocked during critical sections, and has a new system
call to let a process sleep until interrupted. It is similar to hardware-interrupt
functionality. This capability is now part of the POSIX standard.

A.3.4 Process Groups

Groups of related processes frequently cooperate to accomplish a common task.
For instance, processes may create, and communicate over, pipes. Such a set of
processes is termed a process group, or a job. Signals may be sent to all processes
in a group. A process usually inherits its process group from its parent, but the
setpgrp system call allows a process to change its group.

Process groups are used by the C shell to control the operation of multiple
jobs. Only one process group may use a terminal device for I/O at any time.
This foreground job has the attention of the user on that terminal while all
other nonattached jobs (background jobs) perform their function without user
interaction. Access to the terminal is controlled by process group signals.
Each job has a controlling terminal (again, inherited from its parent). If the
process group of the controlling terminal matches the group of a process, that
process is in the foreground, and is allowed to perform I/O. If a nonmatching
(background) process attempts the same, a SIGTTIN or SIGTTOU signal is sent
to its process group. This signal usually results in the process group freezing
until it is foregrounded by the user, at which point it receives a SIGCONT signal,
indicating that the process can perform the I/O. Similarly, a SIGSTOP may be
sent to the foreground process group to freeze it.

A.3.5 Information Manipulation

System calls exist to set and return both an interval timer (getitimer/setitimer)
and the current time (gettimeofday/settimeofday) in microseconds. In addi-
tion, processes can ask for their process identifier (getpid), their group identifier
(getgid), the name of the machine on which they are executing (gethostname),
and many other values.

A.3.6 Library Routines

The system-call interface to UNIX is supported and augmented by a large
collection of library routines and header files. The header files provide the
definition of complex data structures used in system calls. In addition, a large
library of functions provides additional program support.

A.4 User Interface 823

For example, the UNIX I/O system calls provide for the reading and writing
of blocks of bytes. Some applications may want to read and write only 1 byte
at a time. Although it would be possible to read and write 1 byte at a time,
that would require a system call for each byte—a very high overhead. Instead,
a set of standard library routines (the standard I/O package accessed through
the header file <stdio.h>) provides another interface, which reads and writes
several thousand bytes at a time using local buffers, and transfers between these
buffers (in user memory) when I/O is desired. Formatted I/O is also supported
by the standard I/O package.

Additional library support is provided for mathematical functions, net-
work access, data conversion, and so on. The FreeBSD kernel supports over 300
system calls; the C program library has over 300 library functions. Although the
library functions eventually result in system calls where necessary (for example,
the getchar library routine will result in a read system call if the file buffer is
empty), it is generally unnecessary for the programmer to distinguish between
the basic set of kernel system calls and the additional functions provided by
library functions.

A.4 User Interface

Both the programmer and the user of a UNIX system deal mainly with the set
of systems programs that have been written and are available for execution.
These programs make the necessary system calls to support their function, but
the system calls themselves are contained within the program and do not need
to be obvious to the user.

The common systems programs can be grouped into several categories;
most of them are file or directory oriented. For example, the systems programs
to manipulate directories are mkdir to create a new directory, rmdir to remove
a directory, cd to change the current directory to another, and pwd to print the
absolute path name of the current (working) directory.

The ls program lists the names of the files in the current directory. Any of
28 options can ask that properties of the files be displayed also. For example,
the -l option asks for a long listing, showing the file name, owner, protection,
date and time of creation, and size. The cp program creates a new file that is a
copy of an existing file. The mv program moves a file from one place to another
in the directory tree. In most cases, this move simply requires a renaming of the
file; if necessary, however, the file is copied to the new location and the old copy
is deleted. A file is deleted by the rm program (which makes an unlink system
call).

To display a file on the terminal, a user can run cat. The cat program takes
a list of files and concatenates them, copying the result to the standard output,
commonly the terminal. On a high-speed cathode-ray tube (CRT) display, of
course, the file may speed by too fast to be read. The more program displays the
file one screen at a time, pausing until the user types a character to continue to

824 Appendix A The FreeBSD System

the next screen. The head program displays just the first few lines of a file; tail
shows the last few lines.

These are the basic systems programs widely used in UNIX. In addition,
there are a number of editors (ed, sed, emacs, vi, and so on), compilers (C,
Pascal, FORTRAN, and so on), and text formatters (troff, TEX, scribe, and so
on). There are also programs for sorting (sort) and comparing files (cmp, diff),
looking for patterns (grep, awk), sending mail to other users (mail), and many
other activities.

A.4.1 Shells and Commands

Both user-written and systems programs are normally executed by a command
interpreter. The command interpreter in UNIX is a user process like any other.
It is called a shell, as it surrounds the kernel of the operating system. Users can
write their own shell, and there are, in fact, several shells in general use. The
Bourne shell, written by Steve Bourne, is probably the most widely used—or, at
least, it is the most widely available. The C shell, mostly the work of Bill Joy, a
founder of Sun Microsystems, is the most popular on BSD systems. The Korn
shell, by Dave Korn, has become popular because it combines the features of
the Bourne shell and the C shell.

The common shells share much of their command-language syntax. UNIX
is normally an interactive system. The shell indicates its readiness to accept
another command by typing a prompt, and the user types a command on a
single line. For instance, in the line

% ls -l

the percent sign is the usual C shell prompt, and the ls -l (typed by the user) is
the (long) list-directory command. Commands can take arguments, which the
user types after the command name on the same line, separated by white space
(spaces or tabs).

Although there are a few commands built into the shells (such as cd), a
typical command is an executable binary object file. A list of several directories,
the search path, is kept by the shell. For each command, each of the directories
in the search path is searched, in order, for a file of the same name. If a file is
found, it is loaded and executed. The search path can be set by the user. The
directories /bin and /usr/bin are almost always in the search path, and a typical
search path on a FreeBSD system might be

(. /usr/avi/bin /usr/local/bin /bin /usr/bin)

The ls command’s object file is /bin/ls, and the shell itself is /bin/sh (the Bourne
shell) or /bin/csh (the C shell).

A.4 User Interface 825

Execution of a command is done by a fork system call followed by an
execve of the object file. The shell usually then does a wait to suspend its own
execution until the command completes (Figure A.4). There is a simple syntax
(an ampersand [&] at the end of the command line) to indicate that the shell
should not wait for the completion of the command. A command left running
in this manner while the shell continues to interpret further commands is said
to be a background command, or to be running in the background. Processes for
which the shell does wait are said to run in the foreground.

The C shell in FreeBSD systems provides a facility called job control (partially
implemented in the kernel), as mentioned previously. Job control allows pro-
cesses to be moved between the foreground and the background. The processes
can be stopped and restarted on various conditions, such as a background job
wanting input from the user’s terminal. This scheme allows most of the control
of processes provided by windowing or layering interfaces, but requires no
special hardware. Job control is also useful in window systems, such as the
X Window System developed at MIT. Each window is treated as a terminal,
allowing multiple processes to be in the foreground (one per window) at any
one time. Of course, background processes may exist on any of the windows.
The Korn shell also supports job control, and it is likely that job control (and
process groups) will be standard in future versions of UNIX.

A.4.2 Standard I/O

Processes can open files as they like, but most processes expect three file
descriptors (numbers 0, 1, and 2) to be open when they start. These file
descriptors are inherited across the fork (and possibly the execve) that created
the process. They are known as standard input (0), standard output (1), and
standard error (2). All three are frequently open to the user’s terminal. Thus,
the program can read what the user types by reading standard input, and the
program can send output to the user’s screen by writing to standard output.
The standard-error file descriptor is also open for writing and is used for error
output; standard output is used for ordinary output. Most programs can also
accept a file (rather than a terminal) for standard input and standard output.
The program does not care where its input is coming from and where its output
is going. This is one of the elegant design features of UNIX.

The common shells have a simple syntax for changing what files are open
for the standard I/O streams of a process. Changing a standard file is called
I/O redirection. The syntax for I/O redirection is shown in Figure A.5. In this
example, the ls command produces a listing of the names of files in the current
directory, the pr command formats that list into pages suitable for a printer, and
the lpr command spools the formatted output to a printer, such as /dev/lp0. The
subsequent command forces all output and all error messages to be redirected
to a file. Without the ampersand, error messages appear on the terminal.

826 Appendix A The FreeBSD System

command meaning of command

% ls > filea

% pr < filea > fileb

% lpr < fileb

% % make program > & errs

direct output of ls to file filea

input from filea and output to fileb

input from fileb

save both standard output and
standard error in a file

Figure A.5 Standard I/O redirection.

A.4.3 Pipelines, Filters, and Shell Scripts

The first three commands of Figure A.5 could have been coalesced into the one
command

% ls | pr | lpr

Each vertical bar tells the shell to arrange for the output of the preceding
command to be passed as input to the following command. A pipe is used
to carry the data from one process to the other. One process writes into one end
of the pipe, and another process reads from the other end. In the example, the
write end of one pipe would be set up by the shell to be the standard output of
ls, and the read end of the pipe would be the standard input of pr; there would
be another pipe between pr and lpr.

A command such as pr that passes its standard input to its standard output,
performing some processing on it, is called a filter. Many UNIX commands can
be used as filters. Complicated functions can be pieced together as pipelines of
common commands. Also, common functions, such as output formatting, do
not need to be built into numerous commands, because the output of almost
any program can be piped through pr (or some other appropriate filter).

Both of the common UNIX shells are also programming languages, with
shell variables and the usual higher-level programming-language control con-
structs (loops, conditionals). The execution of a command is analogous to a
subroutine call. A file of shell commands, a shell script, can be executed like
any other command, with the appropriate shell being invoked automatically
to read it. Shell programming thus can be used to combine ordinary programs
conveniently for sophisticated applications without the necessity of any pro-
gramming in conventional languages.

This external user view is commonly thought of as the definition of UNIX,
yet it is the most easily changed definition. Writing a new shell with a quite
different syntax and semantics would greatly change the user view while not

A.5 Process Management 827

changing the kernel or even the programmer interface. Several menu-driven
and iconic interfaces for UNIX now exist, and the X Window System is rapidly
becoming a standard. The heart of UNIX is, of course, the kernel. This kernel is
much more difficult to change than is the user interface, because all programs
depend on the system calls that it provides to remain consistent. Of course, new
system calls can be added to increase functionality, but programs must then be
modified to use the new calls.

A.5 Process Management

A major design problem for operating systems is the representation of pro-
cesses. One substantial difference between UNIX and many other systems is
the ease with which multiple processes can be created and manipulated. These
processes are represented in UNIX by various control blocks. There are no
system control blocks accessible in the virtual address space of a user process;
control blocks associated with a process are stored in the kernel. The informa-
tion in these control blocks is used by the kernel for process control and CPU
scheduling.

A.5.1 Process Control Blocks

The most basic data structure associated with processes is the process structure.
A process structure contains everything that the system needs to know about a
process when the process is swapped out, such as its unique process identifier,
scheduling information (such as the priority of the process), and pointers to
other control blocks. There is an array of process structures whose length is
defined at system linking time. The process structures of ready processes are
kept linked together by the scheduler in a doubly linked list (the ready queue),
and there are pointers from each process structure to the process’ parent, to its
youngest living child, and to various other relatives of interest, such as a list of
processes sharing the same program code (text).

The virtual address space of a user process is divided into text (program
code), data, and stack segments. The data and stack segments are always
in the same address space, but may grow separately, and usually in opposite
directions: most frequently, the stack grows down as the data grow up toward
it. The text segment is sometimes (as on an Intel 8086 with separate instruction
and data space) in an address space different from the data and stack, and is
usually read-only. The debugger puts a text segment in read-write mode to be
able to allow insertion of breakpoints.

Every process with sharable text (almost all, under FreeBSD) has a pointer
from its process structure to a text structure. The text structure records how
many processes are using the text segment, including a pointer into a list of
their process structures, and where the page table for the text segment can be

828 Appendix A The FreeBSD System

found on disk when it is swapped. The text structure itself is always resident
in main memory: an array of such structures is allocated at system link time.
The text, data, and stack segments for the processes may be swapped. When
the segments are swapped in, they are paged.

The page tables record information on the mapping from the process’ virtual
memory to physical memory. The process structure contains pointers to the
page table, for use when the process is resident in main memory, or the address
of the process on the swap device, when the process is swapped. There is no
special separate page table for a shared text segment; every process sharing the
text segment has entries for its pages in the process’ page table.

Information about the process that is needed only when the process is
resident (that is, not swapped out) is kept in the user structure (or u structure),
rather than in the process structure. The u structure is mapped read-only into
user virtual address space, so user processes can read its contents. It is writable
by the kernel. The u structure contains a copy of the Process Control Block or
PCB is kept here for saving the process’ general registers, stack pointer, program
counter, and page-table base registers when the process is not running. There
is space to keep system-call parameters and return values. All user and group
identifiers associated with the process (not just the effective user identifier kept
in the process structure) are kept here. Signals, timers, and quotas have data
structures here. Of more obvious relevance to the ordinary user, the current
directory and the table of open files are maintained in the user structure.

Every process has both a user and a system mode. Most ordinary work is
done in user mode, but, when a system call is made, it is performed in system
mode. The system and user phases of a process never execute simultaneously.
When a process is executing in system mode, a kernel stack for that process is
used, rather than the user stack belonging to that process. The kernel stack for
the process immediately follows the user structure: The kernel stack and the
user structure together compose the system data segment for the process. The
kernel has its own stack for use when it is not doing work on behalf of a process
(for instance, for interrupt handling).

Figure A.6 illustrates how the process structure is used to find the various
parts of a process.

The fork system call allocates a new process structure (with a new pro-
cess identifier) for the child process, and copies the user structure. There is
ordinarily no need for a new text structure, as the processes share their text;
the appropriate counters and lists are merely updated. A new page table is
constructed, and new main memory is allocated for the data and stack seg-
ments of the child process. The copying of the user structure preserves open
file descriptors, user and group identifiers, signal handling, and most similar
properties of a process.

The vfork system call does not copy the data and stack to the new process;
rather, the new process simply shares the page table of the old one. A new user
structure and a new process structure are still created. A common use of this

A.5 Process Management 829

system call is by a shell to execute a command and to wait for its completion.
The parent process uses vfork to produce the child process. Because the child
process wishes to use an execve immediately to change its virtual address space
completely, there is no need for a complete copy of the parent process. Such
data structures as are necessary for manipulating pipes may be kept in registers
between the vfork and the execve. Files may be closed in one process without
affecting the other process, since the kernel data structures involved depend on
the user structure, which is not shared. The parent is suspended when it calls
vfork until the child either calls execve or terminates, so that the parent will not
change memory that the child needs.

When the parent process is large, vfork can produce substantial savings
in system CPU time. However, it is a fairly dangerous system call, since any
memory change occurs in both processes until the execve occurs. An alternative
is to share all pages by duplicating the page table, but to mark the entries of
both page tables as copy-on-write. The hardware protection bits are set to trap
any attempt to write in these shared pages. If such a trap occurs, a new frame
is allocated and the shared page is copied to the new frame. The page tables
are adjusted to show that this page is no longer shared (and therefore no longer
needs to be write-protected), and execution can resume.

An execve system call creates no new process or user structure; rather, the
text and data of the process are replaced. Open files are preserved (although
there is a way to specify that certain file descriptors are to be closed on an
execve). Most signal-handling properties are preserved, but arrangements to

resident tables

swappable process image

user space

system data structure

process
structure

text
structure

user
structure

stack

data

text

kernel
stack

Figure A.6 Finding parts of a process using the process structure.

830 Appendix A The FreeBSD System

call a specific user routine on a signal are canceled, for obvious reasons. The
process identifier and most other properties of the process are unchanged.

A.5.2 CPU Scheduling

CPU scheduling in UNIX is designed to benefit interactive processes. Processes
are given small CPU time slices by a priority algorithm that reduces to round-
robin scheduling for CPU-bound jobs.

Every process has a scheduling priority associated with it; larger numbers
indicate lower priority. Processes doing disk I/O or other important tasks have
priorities less than “pzero” and cannot be killed by signals. Ordinary user
processes have positive priorities and thus are all less likely to be run than
are any system process, although user processes can set precedence over one
another through the nice command.

The more CPU time a process accumulates, the lower (more positive) its pri-
ority becomes, and vice versa, so there is negative feedback in CPU scheduling
and it is difficult for a single process to take all the CPU time. Process aging is
employed to prevent starvation.

Older UNIX systems used a 1-second quantum for the round-robin schedul-
ing. FreeBSD reschedules processes every 0.1 second and recomputes priorities
every second. The round-robin scheduling is accomplished by the timeout
mechanism, which tells the clock interrupt driver to call a kernel subroutine
after a specified interval; the subroutine to be called in this case causes the
rescheduling and then resubmits a timeout to call itself again. The priority
recomputation is also timed by a subroutine that resubmits a timeout for itself.

There is no preemption of one process by another in the kernel. A process
may relinquish the CPU because it is waiting on I/O or because its time slice
has expired. When a process chooses to relinquish the CPU, it goes to sleep
on an event. The kernel primitive used for this purpose is called sleep (not to
be confused with the user-level library routine of the same name). It takes an
argument, which is by convention the address of a kernel data structure related
to an event that the process wants to occur before that process is awakened.
When the event occurs, the system process that knows about it calls wakeup
with the address corresponding to the event, and all processes that had done a
sleep on the same address are put in the ready queue to be run.

For example, a process waiting for disk I/O to complete will sleep on the
address of the buffer header corresponding to the data being transferred. When
the interrupt routine for the disk driver notes that the transfer is complete,
it calls wakeup on the buffer header. The interrupt uses the kernel stack for
whatever process happened to be running at the time, and the wakeup is done
from that system process.

The process that actually does run is chosen by the scheduler. Sleep takes a
second argument, which is the scheduling priority to be used for this purpose.

A.6 Memory Management 831

This priority argument, if less than “pzero,” also prevents the process from
being awakened prematurely by some exceptional event, such as a signal.

When a signal is generated, it is left pending until the system half of the
affected process next runs. This event usually happens soon, since the signal
normally causes the process to be awakened if the process has been waiting for
some other condition.

There is no memory associated with events, and the caller of the routine
that does a sleep on an event must be prepared to deal with a premature return,
including the possibility that the reason for waiting has vanished.

There are race conditions involved in the event mechanism. If a process
decides (because of checking a flag in memory, for instance) to sleep on an
event, and the event occurs before the process can execute the primitive that
does the actual sleep on the event, the process sleeping may then sleep forever.
We prevent this situation by raising the hardware processor priority during
the critical section so that no interrupts can occur, and thus only the process
desiring the event can run until it is sleeping. Hardware processor priority is
used in this manner to protect critical regions throughout the kernel, and is the
greatest obstacle to porting UNIX to multiple processor machines. However,
this problem has not prevented such ports from being done repeatedly.

Many processes such as text editors are I/O bound and usually will be
scheduled mainly on the basis of waiting for I/O. Experience suggests that
the UNIX scheduler performs best with I/O-bound jobs, as can be observed
when there are several CPU-bound jobs, such as text formatters or language
interpreters, running.

What has been referred to here as CPU scheduling corresponds closely to
the short-term scheduling of Chapter 4, although the negative-feedback property
of the priority scheme provides some long-term scheduling in that it largely
determines the long-term job mix. Medium-term scheduling is done by the
swapping mechanism described in Section A.6.

A.6 Memory Management

Much of UNIX’s early development was done on a PDP-11. The PDP-11 has only
eight segments in its virtual address space, and each of these are at most 8192
bytes. The larger machines, such as the PDP-11/70, allow separate instruction
and address spaces, which effectively double the address space and number of
segments, but this address space is still relatively small. In addition, the kernel
was even more severely constrained due to dedication of one data segment
to interrupt vectors, another to point at the per-process system data segment,
and yet another for the UNIBUS (system I/O bus) registers. Further, on the
smaller PDP-11s, total physical memory was limited to 256K. The total memory
resources were insufficient to justify or support complex memory-management
algorithms. Thus, UNIX swapped entire process memory images.

832 Appendix A The FreeBSD System

A.6.1 Paging

Berkeley introduced paging to UNIX with 3BSD. VAX 4.2BSD is a demand-paged
virtual-memory system. External fragmentation of memory is eliminated by
paging. (There is, of course, internal fragmentation, but it is negligible with a
reasonably small page size.) Swapping can be kept to a minimum because more
jobs can be kept in main memory, because paging allows execution with only
parts of each process in memory.

Demand paging is done in a straightforward manner. When a process needs
a page and the page is not there, a page fault to the kernel occurs, a frame of
main memory is allocated, and the proper disk page is read into the frame.

There are a few optimizations. If the page needed is still in the page table
for the process, but has been marked invalid by the page-replacement process,
it can be marked valid and used without any I/O transfer. Pages can similarly
be retrieved from the list of free frames. When most processes are started,
many of their pages are prepaged and are put on the free list for recovery
by this mechanism. Arrangements may also be made for a process to have
no prepaging on startup, but that is seldom done, as it results in more page-
fault overhead, being closer to pure demand paging. FreeBSD implements page
coloring with paging queues. The queues are arranged according to the size of
the processor’s L1 and L2 caches and when a new page needs to be allocated,
FreeBSD tries to get one that is optimally aligned for the cache.

If the page has to be fetched from disk, it must be locked in memory for the
duration of the transfer. This locking ensures that the page will not be selected
for page replacement. Once the page is fetched and mapped properly, it must
remain locked if raw physical I/O is being done on it.

The page-replacement algorithm is more interesting. 4.2BSD uses a modifi-
cation of the second chance (clock) algorithm described in Section 10.4.5. The
map of all nonkernel main memory (the core map or cmap) is swept linearly
and repeatedly by a software clock hand. When the clock hand reaches a given
frame, if the frame is marked as in use by some software condition (for example,
physical I/O is in progress using it), or the frame is already free, the frame is
left untouched, and the clock hand sweeps to the next frame. Otherwise, the
corresponding text or process page-table entry for this frame is located. If the
entry is already invalid, the frame is added to the free list; otherwise, the page-
table entry is made invalid but reclaimable (that is, if it does not get paged out
by the next time it is wanted, it can just be made valid again).

BSD Tahoe added support for systems which do implement the reference
bit. On such systems, one pass of the clock hand turns the reference bit off,
and a second pass places those pages whose reference bits remain off onto the
free list for replacement. Of course, if the page is dirty, it must first be written to
disk before being added to the free list. Pageouts are done in clusters to improve
performance.

A.6 Memory Management 833

There are checks to make sure that the number of valid data pages for a
process does not fall too low, and to keep the paging device from being flooded
with requests. There is also a mechanism by which a process may limit the
amount of main memory it uses.

The LRU clock hand scheme is implemented in the pagedaemon, which is
process 2 (remember that the swapper is process 0, and init is process 1). This
process spends most of its time sleeping, but a check is done several times per
second (scheduled by a timeout) to see if action is necessary; if it is, process
2 is awakened. Whenever the number of free frames falls below a threshold,
lotsfree, the pagedaemon is awakened; thus, if there is always a large amount of
free memory, the pagedaemon imposes no load on the system, because it never
runs.

The sweep of the clock hand each time the pagedaemon process is awakened
(that is, the number of frames scanned, which is usually more than the number
paged out), is determined both by the number of frames lacking to reach lotsfree
and by the number of frames that the scheduler has determined are needed for
various reasons (the more frames needed, the longer the sweep). If the number
of frames free rises to lotsfree before the expected sweep is completed, the hand
stops and the pagedaemon process sleeps. The parameters that determine the
range of the clock-hand sweep are determined at system startup according to
the amount of main memory, such that pagedaemon does not use more than 10
percent of all CPU time.

If the scheduler decides that the paging system is overloaded, processes will
be swapped out whole until the overload is relieved. This swapping usually
happens only if several conditions are met: load average is high, free memory
has fallen below a low limit, minfree; and the average memory available over
recent time is less than a desirable amount, desfree, where lotsfree > desfree
> minfree. In other words, only a chronic shortage of memory with several
processes trying to run will cause swapping, and even then free memory has
to be extremely low at the moment. (An excessive paging rate or a need for
memory by the kernel itself may also enter into the calculations, in rare cases.)
Processes may be swapped by the scheduler, of course, for other reasons (such
as simply for not running for a long time).

The parameter lotsfree is usually one-quarter of the memory in the map
that the clock hand sweeps, and desfree and minfree are usually the same across
different systems, but are limited to fractions of available memory. FreeBSD
dynamically adjusts its paging queues so these virtual memory parameters will
rarely need to be adjusted. Minfree pages must be kept free in order to supply
any pages that might be needed at interupt time.

Every process’ text segment is by default shared and read-only. This scheme
is practical with paging, because there is no external fragmentation, and the
swap space gained by sharing more than offsets the negligible amount of
overhead involved, as the kernel virtual space is large.

834 Appendix A The FreeBSD System

CPU scheduling, memory swapping, and paging interact: the lower the
priority of a process, the more likely that its pages will be paged out and
the more likely that it will be swapped in its entirety. The age preferences
in choosing processes to swap guard against thrashing, but paging does so
more effectively. Ideally, processes will not be swapped out unless they are
idle, because each process will need only a small working set of pages in main
memory at any one time, and the pagedaemon will reclaim unused pages for use
by other processes.

The amount of memory the process will need is some fraction of that
process’ total virtual size, up to one-half if that process has been swapped out
for a long time.

A.7 File System

The UNIX file system supports two main objects: files and directories. Directo-
ries are just files with a special format, so the representation of a file is the basic
UNIX concept.

A.7.1 Blocks and Fragments

Most of the file system is taken up by data blocks, which contain whatever the
users have put in their files. Let us consider how these data blocks are stored
on the disk.

The hardware disk sector is usually 512 bytes. A block size larger than
512 bytes is desirable for speed. However, because UNIX file systems usually
contain a very large number of small files, much larger blocks would cause
excessive internal fragmentation. That is why the earlier 4.1BSD file system was
limited to a 1024-byte (1K) block.

The 4.2BSD solution is to use two block sizes for files which have no indirect
blocks: all the blocks of a file are of a large block size (such as 8K), except the
last. The last block is an appropriate multiple of a smaller fragment size (for
example, 1024) to fill out the file. Thus, a file of size 18,000 bytes would have
two 8K blocks and one 2K fragment (which would not be filled completely).

The block and fragment sizes are set during file-system creation according
to the intended use of the file system: If many small files are expected, the
fragment size should be small; if repeated transfers of large files are expected,
the basic block size should be large. Implementation details force a maximum
block-to-fragment ratio of 8:1, and a minimum block size of 4K, so typical
choices are 4096:512 for the former case and 8192:1024 for the latter.

Suppose data are written to a file in transfer sizes of 1K bytes, and the block
and fragment sizes of the file system are 4K and 512 bytes. The file system
will allocate a 1K fragment to contain the data from the first transfer. The next
transfer will cause a new 2K fragment to be allocated. The data from the original

A.7 File System 835

fragment must be copied into this new fragment, followed by the second 1K
transfer. The allocation routines do attempt to find the required space on
the disk immediately following the existing fragment so that no copying is
necessary, but, if they cannot do so, up to seven copies may be required before
the fragment becomes a block. Provisions have been made for programs to
discover the block size for a file so that transfers of that size can be made, to
avoid fragment recopying.

A.7.2 Inodes

A file is represented by an inode (Figure 11.7). An inode is a record that stores
most of the information about a specific file on the disk. The name inode
(pronounced EYE node) is derived from “index node” and was originally spelled
“i-node”; the hyphen fell out of use over the years. The term is also sometimes
spelled “I node.”

The inode contains the user and group identifiers of the file, the times of the
last file modification and access, a count of the number of hard links (directory
entries) to the file, and the type of the file (plain file, directory, symbolic link,
character device, block device, or socket). In addition, the inode contains 15
pointers to the disk blocks containing the data contents of the file. The first 12
of these pointers point to direct blocks; that is, they contain addresses of blocks
that contain data of the file. Thus, the data for small files (no more than 12
blocks) can be referenced immediately, because a copy of the inode is kept in
main memory while a file is open. If the block size is 4K, then up to 48K of data
may be accessed directly from the inode.

The next three pointers in the inode point to indirect blocks. If the file is
large enough to use indirect blocks, the indirect blocks are each of the major
block size; the fragment size applies to only data blocks. The first indirect
block pointer is the address of a single indirect block. The single indirect block
is an index block, containing not data, but rather the addresses of blocks that
do contain data. Then, there is a double-indirect-block pointer, the address of a
block that contains the addresses of blocks that contain pointers to the actual
data blocks. The last pointer would contain the address of a triple indirect
block; however, there is no need for it. The minimum block size for a file
system in 4.2BSD is 4K, so files with as many as 232 bytes will use only double,
not triple, indirection. That is, as each block pointer takes 4 bytes, we have
49,152 bytes accessible in direct blocks, 4,194,304 bytes accessible by a single
indirection, and 4,294,967,296 bytes reachable through double indirection, for a
total of 4,299,210,752 bytes, which is larger than 232 bytes. The number 232 is
significant because the file offset in the file structure in main memory is kept
in a 32-bit word. Files therefore cannot be larger than 232 bytes. Since file
pointers are signed integers (for seeking backward and forward in a file), the
actual maximum file size is 232−1 bytes. Two gigabytes is large enough for most
purposes.

836 Appendix A The FreeBSD System

A.7.3 Directories

There is no distinction between plain files and directories at this level of imple-
mentation; directory contents are kept in data blocks, and directories are rep-
resented by an inode in the same way as plain files. Only the inode type field
distinguishes between plain files and directories. Plain files are not assumed
to have a structure, however, whereas directories have a specific structure. In
Version 7, file names were limited to 14 characters, so directories were a list of
16-byte entries: 2 bytes for an inode number and 14 bytes for a file name.

In FreeBSD , file names are of variable length, up to 255 bytes, so directory
entries are also of variable length. Each entry contains first the length of
the entry, then the file name and the inode number. This variable-length
entry makes the directory management and search routines more complex, but
greatly improves the ability of users to choose meaningful names for their files
and directories, with no practical limit on the length of the name.

The first two names in every directory are “.” and “..”. New directory
entries are added to the directory in the first space available, generally after
the existing files. A linear search is used.

The user refers to a file by a path name, whereas the file system uses the
inode as its definition of a file. Thus, the kernel has to map the supplied user
path name to an inode. The directories are used for this mapping.

First, a starting directory is determined. If the first character of the path
name is “/”, the starting directory is the root directory. If the path name
starts with any character other than a slash, the starting directory is the current
directory of the current process. The starting directory is checked for proper file
type and access permissions, and an error is returned if necessary. The inode of
the starting directory is always available.

The next element of the path name, up to the next “/”, or to the end of the
path name, is a file name. The starting directory is searched for this name, and
an error is returned if the name is not found. If there is yet another element
in the path name, the current inode must refer to a directory, and an error
is returned if it does not, or if access is denied. This directory is searched as
was the previous one. This process continues until the end of the path name is
reached and the desired inode is returned. This step-by-step process is needed
because at any directory a mount point (or symbolic link, see below) may be
encountered, causing the translation to move to a different directory structure
for continuation.

Hard links are simply directory entries like any other. We handle symbolic
links for the most part by starting the search over with the path name taken
from the contents of the symbolic link. We prevent infinite loops by counting
the number of symbolic links encountered during a path-name search and
returning an error when a limit (eight) is exceeded.

A.7 File System 837

user space

read (4, ...)

system space disk space

data
blocks

inode
list

. . .

in-core
inode

list

tables of
open files

(per process)

file-structure
table

sync

Figure A.7 File-system control blocks.

Nondisk files (such as devices) do not have data blocks allocated on the
disk. The kernel notices these file types (as indicated in the inode) and calls
appropriate drivers to handle I/O for them.

Once the inode is found by, for instance, the open system call, a file structure
is allocated to point to the inode. The file descriptor given to the user refers to
this file structure. FreeBSD has a directory name cache to hold recent directory-to-
inode translations which greatly increases file system performance.

A.7.4 Mapping of a File Descriptor to an Inode

System calls that refer to open files indicate the file by passing a file descriptor
as an argument. The file descriptor is used by the kernel to index a table of
open files for the current process. Each entry of the table contains a pointer to a
file structure. This file structure in turn points to the inode; see Figure A.7. The
open file table has a fixed length which is only settable at boot time. Therefore,
there is a fixed limit on the number of concurrently open files in a system.

The read and write system calls do not take a position in the file as
an argument. Rather, the kernel keeps a file offset, which is updated by an
appropriate amount after each read or write according to the number of data
actually transferred. The offset can be set directly by the lseek system call. If
the file descriptor indexed an array of inode pointers instead of file pointers,
this offset would have to be kept in the inode. Because more than one process
may open the same file, and each such process needs its own offset for the file,
keeping the offset in the inode is inappropriate. Thus, the file structure is used
to contain the offset.

File structures are inherited by the child process after a fork, so several
processes may share the same offset location for a file.

The inode structure pointed to by the file structure is an in-core copy of the
inode on the disk. The in-core inode has a few extra fields, such as a reference

838 Appendix A The FreeBSD System

count of how many file structures are pointing at it, and the file structure has a
similar reference count for how many file descriptors refer to it. When a count
becomes zero, the entry is no longer needed and may be reclaimed and reused.

A.7.5 Disk Structures

The file system that the user sees is supported by data on a mass storage device
—usually, a disk. The user ordinarily knows of only one file system, but this one
logical file system may actually consist of several physical file systems, each on
a different device. Because device characteristics differ, each separate hardware
device defines its own physical file system. In fact, it is generally desirable
to partition large physical devices, such as disks, into multiple logical devices.
Each logical device defines a physical file system. Figure A.8 illustrates how
a directory structure is partitioned into file systems, which are mapped onto
logical devices, which are partitions of physical devices. The sizes and locations
of these partitions were coded into device drivers in earlier systems, but are
maintained on the disk by FreeBSD.

Partitioning a physical device into multiple file systems has several benefits.
Different file systems can support different uses. Although most partitions
would be used by the file system, at least one will be necessary for a swap
area for the virtual-memory software. Reliability is improved, because software
damage is generally limited to only one file system. We can improve efficiency
by varying the file-system parameters (such as the block and fragment sizes) for
each partition. Also, separate file systems prevent one program from using all
available space for a large file, because files cannot be split across file systems.
Finally, disk backups are done per partition, and it is faster to search a backup
tape for a file if the partition is smaller. Restoring the full partition from tape is
also faster.

The actual number of file systems on a drive varies according to the size of
the disk and the purpose of the computer system as a whole. One file system,
the root file system, is always available. Other file systems may be mounted—that
is, integrated into the directory hierarchy of the root file system.

A bit in the inode structure indicates that the inode has a file system
mounted on it. A reference to this file causes the mount table to be searched
to find the device number of the mounted device. The device number is used to
find the inode of the root directory of the mounted file system, and that inode
is used. Conversely, if a path-name element is “..” and the directory being
searched is the root directory of a file system that is mounted, the mount table
is searched to find the inode it is mounted on, and that inode is used.

Each file system is a separate system resource and represents a set of files.
The first sector on the logical device is the boot block, possibly containing a
primary bootstrap program, which may be used to call a secondary bootstrap
program residing in the next 7.5K. A system needs only one partition containing
boot-block data, but duplicates may be installed via privileged programs by

A.7 File System 839

logical file system file systems logical devices physical devices

root

swap

Figure A.8 Mapping of a logical file system to physical devices.

the systems manager, to allow booting when the primary copy is damaged.
The superblock contains static parameters of the file system. These parameters
include the total size of the file system, the block and fragment sizes of the data
blocks, and assorted parameters that affect allocation policies.

A.7.6 Implementations

The user interface to the file system is simple and well defined, allowing the
implementation of the file system itself to be changed without significant effect
on the user. The file system was changed between Version 6 and Version 7, and
again between Version 7 and 4BSD. For Version 7, the size of inodes doubled,
the maximum file and file-system sizes increased, and the details of free-list
handling and superblock information changed. At that time also, seek (with a
16-bit offset) became lseek (with a 32-bit offset), to allow specification of offsets
in larger files, but few other changes were visible outside the kernel.

840 Appendix A The FreeBSD System

In 4.0BSD, the size of blocks used in the file system was increased from 512
bytes to 1024 bytes. Although this increased size produced increased internal
fragmentation on the disk, it doubled throughput, due mainly to the greater
number of data accessed on each disk transfer. This idea was later adopted by
System V, along with a number of other ideas, device drivers, and programs.

4.2BSD added the Berkeley Fast File System, which increased speed, and
was accompanied by new features. Symbolic links required new system calls.
Long file names necessitated the new directory system calls to traverse the now-
complex internal directory structure. Finally, the truncate calls were added. The
Fast File System was a success, and is now found in most implementations of
UNIX. Its performance is made possible by its layout and allocation policies,
which we discuss next. In Section 12.4.4, we discussed changes made in SunOS
to further increase disk throughput.

A.7.7 Layout and Allocation Policies

The kernel uses a <logical device number, inode number> pair to identify a file.
The logical device number defines the file system involved. The inodes in the
file system are numbered in sequence. In the Version 7 file system, all inodes
are in an array immediately following a single superblock at the beginning of
the logical device, with the data blocks following the inodes. The inode number
is effectively just an index into this array.

With the Version 7 file system, a block of a file can be anywhere on the disk
between the end of the inode array and the end of the file system. Free blocks
are kept in a linked list in the superblock. Blocks are pushed onto the front of
the free list, and are removed from the front as needed to serve new files or to
extend existing files. Thus, the blocks of a file may be arbitrarily far from both
the inode and one another. Furthermore, the more a file system of this kind is
used, the more disorganized the blocks in a file become. We can reverse this
process only by reinitializing and restoring the entire file system, which is not a
convenient task to perform. This process was described in Section 12.7.2.

Another difficulty is that the reliability of the file system is suspect. For
speed, the superblock of each mounted file system is kept in memory. Keeping
the superblock in memory allows the kernel to access a superblock quickly,
especially for using the free list. Every 30 seconds, the superblock is written
to the disk, to keep the in-core and disk copies synchronized (by the update
program, using the sync system call). However, it is not uncommon for system
bugs or hardware failures to cause a system crash, which destroys the in-core
superblock between updates to the disk. Then, the free list on disk does not
reflect accurately the state of the disk; to reconstruct it, we must perform a
lengthy examination of all blocks in the file system. Note that this problem
still remains in the new file system.

The 4.2BSD file-system implementation is radically different from that of
Version 7. This reimplementation was done primarily to improve efficiency

A.7 File System 841

data blocks

superblock

cylinder block

inodes

 data blocks

Figure A.9 4.3BSD cylinder group.

and robustness, and most such changes are invisible outside the kernel. There
were other changes introduced at the same time, such as symbolic links and
long file names (up to 255 characters), that are visible at both the system-call
and the user levels. Most of the changes required for these features were not in
the kernel, however, but rather were in the programs that use them.

Space allocation is especially different. The major new concept in FreeBSD
is the cylinder group. The cylinder group was introduced to allow localization
of the blocks in a file. Each cylinder group occupies one or more consecutive
cylinders of the disk, so that disk accesses within the cylinder group require
minimal disk head movement. Every cylinder group has a superblock, a
cylinder block, an array of inodes, and some data blocks (Figure A.9).

The superblock is identical in each cylinder group, so that it can be recov-
ered from any one of them in the event of disk corruption. The cylinder block
contains dynamic parameters of the particular cylinder group. These include a
bit map of free data blocks and fragments, and a bit map of free inodes. Statistics
on recent progress of the allocation strategies are also kept here.

The header information in a cylinder group (the superblock, the cylinder
block, and the inodes) is not always at the beginning of the cylinder group. If
it were, the header information for every cylinder group might be on the same
disk platter; a single disk head crash could wipe out all of them. Therefore,
each cylinder group has its header information at a different offset from the
beginning of the group.

It is common for the directory-listing command ls to read all the inodes
of every file in a directory, making it desirable for all such inodes to be close
together on the disk. For this reason, the inode for a file is usually allocated
from the same cylinder group as is the inode of the file’s parent directory. Not
everything can be localized, however, so an inode for a new directory is put
in a different cylinder group from that of its parent directory. The cylinder
group chosen for such a new directory inode is that with the greatest number
of unused inodes.

To reduce disk head seeks involved in accessing the data blocks of a file,
we allocate blocks from the same cylinder group as often as possible. Because

842 Appendix A The FreeBSD System

a single file cannot be allowed to take up all the blocks in a cylinder group, a
file exceeding a certain size (such as 2 megabytes) has further block allocation
redirected to a different cylinder group, the new group being chosen from
among those having more than average free space. If the file continues to grow,
allocation is again redirected (at each megabyte) to yet another cylinder group.
Thus, all the blocks of a small file are likely to be in the same cylinder group,
and the number of long head seeks involved in accessing a large file is kept
small.

There are two levels of disk-block-allocation routines. The global policy
routines select a desired disk block according to the considerations already
discussed. The local policy routines use the specific information recorded in
the cylinder blocks to choose a block near the one requested. If the requested
block is not in use, it is returned. Otherwise, the block rotationally closest to
the one requested in the same cylinder, or a block in a different cylinder but in
the same cylinder group, is returned. If there are no more blocks in the cylinder
group, a quadratic rehash is done among all the other cylinder groups to find a
block; if that fails, an exhaustive search is done. If enough free space (typically
10 percent) is left in the file system, blocks usually are found where desired, the
quadratic rehash and exhaustive search are not used, and performance of the
file system does not degrade with use.

Because of the increased efficiency of the Fast File System, typical disks are
now utilized at 30 percent of their raw transfer capacity. This percentage is a
marked improvement over that realized with the Version 7 file system, which
used about 3 percent of the bandwidth.

BSD Tahoe introduced the Fat Fast File System, which allows the number of
inodes per cylinder group, the number of cylinders per cylinder group, and the
number of distinguished rotational positions to be set when the file system is
created. FreeBSD used to set these parameters according to the disk hardware
type.

A.8 I/O System

One of the purposes of an operating system is to hide the peculiarities of
specific hardware devices from the user. For example, the file system presents
a simple consistent storage facility (the file) independent of the underlying disk
hardware. In UNIX, the peculiarities of I/O devices are also hidden from the
bulk of the kernel itself by the I/O system. The I/O system consists of a buffer
caching system, general device driver code, and drivers for specific hardware
devices. Only the device driver knows the peculiarities of a specific device. The
major parts of the I/O system are diagrammed in Figure A.10.

There are three main kinds of I/O in FreeBSD : block devices, character
devices, and the socket interface. The socket interface, together with its protocols
and network interfaces, will be treated in Section 4.6.1.

A.8 I/O System 843

Block devices include disks and tapes. Their distinguishing characteristic
is that they are directly addressable in a fixed block size—usually, 512 bytes.
A block-device driver is required to isolate details of tracks, cylinders, and so
on, from the rest of the kernel. Block devices are accessible directly through
appropriate device special files (such as /dev/rp0), but are more commonly
accessed indirectly through the file system. In either case, transfers are buffered
through the block buffer cache, which has a profound effect on efficiency.

Character devices include terminals and line printers, but also almost every-
thing else (except network interfaces) that does not use the block buffer cache.
For instance, /dev/mem is an interface to physical main memory, and /dev/null is
a bottomless sink for data and an endless source of end-of-file markers. Some
devices, such as high-speed graphics interfaces, may have their own buffers or
may always do I/O directly into the user’s data space; because they do not use
the block buffer cache, they are classed as character devices.

Terminals and terminal-like devices use C-lists, which are buffers smaller
than those of the block buffer cache.

Block devices and character devices are the two main device classes. Device
drivers are accessed by one of two arrays of entry points. One array is for
block devices; the other is for character devices. A device is distinguished by
a class (block or character) and a device number. The device number consists
of two parts. The major device number is used to index the array for character
or block devices to find entries into the appropriate device driver. The minor
device number is interpreted by the device driver as, for example, a logical disk
partition or a terminal line.

A device driver is connected to the rest of the kernel only by the entry points
recorded in the array for its class, and by its use of common buffering systems.
This segregation is important for portability, and also for system configuration.

the hardware

system-call interface to the kernel

socket

protocols

network
interface

plain file

file
system

block-device driver

cooked
block
interface

raw tty
interface

cooked TTY

line
discipline

character-device driver

raw
block
interface

Figure A.10 4.3BSD kernel I/O structure.

844 Appendix A The FreeBSD System

A.8.1 Block Buffer Cache

The block devices use a block buffer cache. The buffer cache consists of a
number of buffer headers, each of which can point to a piece of physical
memory, as well as to a device number and a block number on the device. The
buffer headers for blocks not currently in use are kept in several linked lists,
one each for

• Buffers recently used, linked in LRU order (the LRU list)

• Buffers not recently used, or without valid contents (the AGE list)

• EMPTY buffers with no physical memory associated with them

The buffers in these lists are also hashed by device and block number for search
efficiency.

When a block is wanted from a device (a read), the cache is searched. If the
block is found, it is used, and no I/O transfer is necessary. If it is not found,
a buffer is chosen from the AGE list, or the LRU list if AGE is empty. Then
the device number and block number associated with it are updated, memory
is found for it if necessary, and the new data are transferred into it from the
device. If there are no empty buffers, the LRU buffer is written to its device (if it
is modified) and the buffer is reused.

On a write, if the block in question is already in the buffer cache, the new
data are put in the buffer (overwriting any previous data), the buffer header
is marked to indicate the buffer has been modified, and no I/O is immediately
necessary. The data will be written when the buffer is needed for other data. If
the block is not found in the buffer cache, an empty buffer is chosen (as with a
read) and a transfer is done to this buffer.

Writes are periodically forced for dirty buffer blocks to minimize potential
file-system inconsistencies after a crash.

The number of data in a buffer in FreeBSD is variable, up to a maximum
over all file systems, usually 8K. The minimum size is the paging-cluster size,
usually 1024 bytes. Buffers are page-cluster aligned, and any page cluster may
be mapped into only one buffer at a time, just as any disk block may be mapped
into only one buffer at a time. The EMPTY list holds buffer headers which are
used if a physical memory block of 8K is split to hold multiple, smaller blocks.
Headers are needed for these blocks and are retrieved from EMPTY.

The number of data in a buffer may grow as a user process writes more data
following those already in the buffer. When this increase in the data occurs, a
new buffer large enough to hold all the data is allocated, and the original data
are copied into it, followed by the new data. If a buffer shrinks, a buffer is taken
off the empty queue, excess pages are put in it, and that buffer is released to be
written to disk.

Some devices, such as magnetic tapes, require blocks to be written in a
certain order, so facilities are provided to force a synchronous write of buffers

A.8 I/O System 845

to these devices, in the correct order. Directory blocks are also written syn-
chronously, to forestall crash inconsistencies. Consider the chaos that could
occur if many changes were made to a directory, but the directory entries
themselves were not updated.

The size of the buffer cache can have a profound effect on the performance
of a system, because, if it is large enough, the percentage of cache hits can be
high and the number of actual I/O transfers low. FreeBSD optimizes the buffer
cache by continually adjusting the amount of memory used by programs and
the disk cache.

There are some interesting interactions among the buffer cache, the file
system, and the disk drivers. When data are written to a disk file, they are
buffered in the cache, and the disk driver sorts its output queue according
to disk address. These two actions allow the disk driver to minimize disk
head seeks and to write data at times optimized for disk rotation. Unless
synchronous writes are required, a process writing to disk simply writes into
the buffer cache, and the system asynchronously writes the data to disk when
convenient. The user process sees very fast writes. When data are read from a
disk file, the block I/O system does some read-ahead; however, writes are much
nearer to asynchronous than are reads. Thus, output to the disk through the file
system is often faster than is input for large transfers, counter to intuition.

A.8.2 Raw Device Interfaces

Almost every block device also has a character interface, and these are called
raw device interfaces. Such an interface differs from the block interface in that the
block buffer cache is bypassed.

Each disk driver maintains a queue of pending transfers. Each record in
the queue specifies whether it is a read or a write, a main memory address for
the transfer (usually in 512-byte increments), a device address for the transfer
(usually the address of a disk sector), and a transfer size (in sectors). It is simple
to map the information from a block buffer to what is required for this queue.

It is almost as simple to map a piece of main memory corresponding to
part of a user process’ virtual address space. This mapping is what a raw disk
interface, for instance, does. Unbuffered transfers directly to or from a user’s
virtual address space are thus allowed. The size of the transfer is limited by the
physical devices, some of which require an even number of bytes.

The kernel accomplishes transfers for swapping and paging simply by
putting the appropriate request on the queue for the appropriate device. No
special swapping or paging device driver is needed.

The 4.2BSD file-system implementation was actually written and largely
tested as a user process that used a raw disk interface, before the code was
moved into the kernel. In an interesting about-face, the Mach operating system
has no file system per se. File systems can be implemented as user-level tasks.

846 Appendix A The FreeBSD System

A.8.3 C-Lists

Terminal drivers use a character buffering system, which keeps small blocks
of characters (usually 28 bytes) in linked lists. There are routines to enqueue
and dequeue characters for such lists. Although all free character buffers are
kept in a single free list, most device drivers that use them limit the number of
characters that may be queued at one time for any given terminal line.

A write system call to a terminal enqueues characters on a list for the
device. An initial transfer is started, and interrupts cause dequeuing of char-
acters and further transfers.

Input is similarly interrupt driven. Terminal drivers typically support two
input queues, however, and conversion from the first (raw queue) to the other
(canonical queue) is triggered by the interrupt routine putting an end-of-line
character on the raw queue. The process doing a read on the device is then
awakened, and its system phase does the conversion; the characters thus put
on the canonical queue are then available to be returned to the user process by
the read.

It is also possible to have the device driver bypass the canonical queue and
return characters directly from the raw queue. This mode of operation is known
as raw mode. Full-screen editors, and other programs that need to react to every
keystroke, use this mode.

A.9 Interprocess Communication

Many tasks can be accomplished in isolated processes, but many others require
interprocess communication. Isolated computing systems have long served
for many applications, but networking is increasingly important. With the
increasing use of personal workstations, resource sharing is becoming more
common. Interprocess communication has not traditionally been one of UNIX’s
strong points.

A.9.1 Sockets

The pipe (discussed in Section A.4.3) is the IPC mechanism most characteristic
of UNIX. A pipe permits a reliable unidirectional byte stream between two
processes. It is traditionally implemented as an ordinary file, with a few
exceptions. It has no name in the file system, being created instead by the pipe
system call. Its size is fixed, and when a process attempts to write to a full
pipe, the process is suspended. Once all data previously written into the pipe
have been read out, writing continues at the beginning of the file (pipes are not
true circular buffers). One benefit of the small size (usually 4096 bytes) of pipes
is that pipe data are seldom actually written to disk; they usually are kept in
memory by the normal block buffer cache.

A.9 Interprocess Communication 847

In FreeBSD , pipes are implemented as a special case of the socket mecha-
nism. The socket mechanism provides a general interface not only to facilities
such as pipes, which are local to one machine, but also to networking facilities.
Even on the same machine, a pipe can be used only by two processes related
through use of the fork system call. The socket mechanism can be used by
unrelated processes.

A socket is an endpoint of communication. A socket in use usually has an
address bound to it. The nature of the address depends on the communication
domain of the socket. A characteristic property of a domain is that processes
communicating in the same domain use the same address format. A single socket
can communicate in only one domain.

The three domains currently implemented in FreeBSD are the UNIX domain
(AF UNIX), the Internet domain (AF INET), and the XEROX Network Services
(NS) domain (AF NS). The address format of the UNIX domain is ordinary file-
system path names, such as /alpha/beta/gamma. Processes communicating in
the Internet domain use DARPA Internet communications protocols (such as
TCP/IP) and Internet addresses, which consist of a 32-bit host number and a
32-bit port number (representing a rendezvous point on the host).

There are several socket types, which represent classes of services. Each type
may or may not be implemented in any communication domain. If a type
is implemented in a given domain, it may be implemented by one or more
protocols, which may be selected by the user:

• Stream sockets: These sockets provide reliable, duplex, sequenced data
streams. No data are lost or duplicated in delivery, and there are no
record boundaries. This type is supported in the Internet domain by the
TCP protocol. In the UNIX domain, pipes are implemented as a pair of
communicating stream sockets.

• Sequenced packet sockets: These sockets provide data streams like those
of stream sockets, except that record boundaries are provided. This type is
used in the XEROX AF NS protocol.

• Datagram sockets: These sockets transfer messages of variable size in
either direction. There is no guarantee that such messages will arrive in
the same order they were sent, or that they will be unduplicated, or that
they will arrive at all, but the original message (record) size is preserved
in any datagram that does arrive. This type is supported in the Internet
domain by the UDP protocol.

• Reliably delivered message sockets: These sockets transfer messages that
are guaranteed to arrive, and that otherwise are like the messages trans-
ferred using datagram sockets. This type is currently unsupported.

• Raw sockets: These sockets allow direct access by processes to the protocols
that support the other socket types. The protocols accessible include not

848 Appendix A The FreeBSD System

only the uppermost ones, but also lower-level protocols. For example,
in the Internet domain, it is possible to reach TCP, IP beneath that, or an
Ethernet protocol beneath that. This capability is useful for developing new
protocols.

The socket facility has a set of system calls specific to it. The socket system
call creates a socket. It takes as arguments specifications of the communication
domain, the socket type, and the protocol to be used to support that type. The
value returned by the call is a small integer called a socket descriptor, which is in
the same name space as file descriptors. The socket descriptor indexes the array
of open “files” in the u structure in the kernel, and has a file structure allocated
for it. The FreeBSD file structure may point to a socket structure instead of to
an inode. In this case, certain socket information (such as the socket’s type,
message count, and the data in its input and output queues) is kept directly in
the socket structure.

For another process to address a socket, the socket must have a name. A
name is bound to a socket by the bind system call, which takes the socket
descriptor, a pointer to the name, and the length of the name as a byte string.
The contents and length of the byte string depend on the address format.
The connect system call is used to initiate a connection. The arguments are
syntactically the same as those for bind; the socket descriptor represents the
local socket and the address is that of the foreign socket to which the attempt to
connect is made.

Many processes that communicate using the socket IPC follow the client–
server model. In this model, the server process provides a service to the client
process. When the service is available, the server process listens on a well-
known address, and the client process uses connect, as described previously, to
reach the server.

A server process uses socket to create a socket and bind to bind the well-
known address of its service to that socket. Then, it uses the listen system call to
tell the kernel that it is ready to accept connections from clients, and to specify
how many pending connections the kernel should queue until the server can
service them. Finally, the server uses the accept system call to accept individual
connections. Both listen and accept take as an argument the socket descriptor
of the original socket. Accept returns a new socket descriptor corresponding
to the new connection; the original socket descriptor is still open for further
connections. The server usually uses fork to produce a new process after the
accept to service the client while the original server process continues to listen
for more connections.

There are also system calls for setting parameters of a connection and for
returning the address of the foreign socket after an accept.

When a connection for a socket type such as a stream socket is established,
the addresses of both endpoints are known and no further addressing informa-

A.9 Interprocess Communication 849

tion is needed to transfer data. The ordinary read and write system calls may
then be used to transfer data.

The simplest way to terminate a connection and to destroy the associated
socket is to use the close system call on its socket descriptor. We may also wish
to terminate only one direction of communication of a duplex connection; the
shutdown system call can be used for this purpose.

Some socket types, such as datagram sockets, do not support connections;
instead, their sockets exchange datagrams that must be addressed individually.
The system calls sendto and recvfrom are used for such connections. Both
take as arguments a socket descriptor, a buffer pointer and the length, and an
address-buffer pointer and length. The address buffer contains the address
to send to for sendto and is filled in with the address of the datagram just
received by recvfrom. The number of data actually transferred is returned by
both system calls.

The select system call can be used to multiplex data transfers on several file
descriptors and/or socket descriptors. It can even be used to allow one server
process to listen for client connections for many services and to fork a process
for each connection as the connection is made. The server does a socket, bind,
and listen for each service, and then does a select on all the socket descriptors.
When select indicates activity on a descriptor, the server does an accept on it
and forks a process on the new descriptor returned by accept, leaving the parent
process to do a select again.

A.9.2 Network Support

Almost all current UNIX systems support the UUCP network facilities, which
are mostly used over dial-up telephone lines to support the UUCP mail network
and the USENET news network. These are, however, rudimentary networking
facilities, as they do not support even remote login, much less remote procedure
call or distributed file systems. These facilities are also almost completely
implemented as user processes, and are not part of the operating system proper.

FreeBSD supports the DARPA Internet protocols UDP, TCP, IP, and ICMP on a
wide range of Ethernet, token-ring, and ARPANET interfaces. The framework in
the kernel to support this is intended to facilitate the implementation of further
protocols, and all protocols are accessible via the socket interface. The first
version of the code was written by Rob Gurwitz of BBN as an add-on package
for 4.1BSD.

The International Standards Organization’s (ISO) Open System Intercon-
nection (OSI) Reference Model for networking prescribes seven layers of net-
work protocols and strict methods of communication between them. An imple-
mentation of a protocol may communicate only with a peer entity speaking the
same protocol at the same layer, or with the protocol-protocol interface of a
protocol in the layer immediately above or below in the same system. The ISO
networking model is implemented in FreeBSD Reno and 4.4BSD.

850 Appendix A The FreeBSD System

The FreeBSD networking implementation, and to a certain extent the socket
facility, is more oriented toward the ARPANET Reference Model (ARM). The
ARPANET in its original form served as a proof of concept for many networking
concepts, such as packet switching and protocol layering. The ARPANET was
retired in 1988 because the hardware that supported it was no longer state of
the art. Its successors, such as the NSFNET and the Internet, are even larger, and
serve as a communications utility for researchers and as a testbed for Internet
gateway research. The ARM predates the ISO model; the ISO model was in large
part inspired by the ARPANET research.

Although the ISO model is often interpreted as requiring a limit of one
protocol communicating per layer, the ARM allows several protocols in the same
layer. There are only four protocol layers in the ARM, plus

• Process/Applications: This layer subsumes the application, presentation,
and session layers of the ISO model. Such user-level programs as the File
Transfer Protocol (FTP) and Telnet (remote login) exist at this level.

• Host-Host: This layer corresponds to ISO’s transport and the top part
of its network layers. Both the Transmission Control Protocol (TCP) and
the Internet Protocol (IP) are in this layer, with TCP on top of IP. TCP
corresponds to an ISO transport protocol, and IP performs the addressing
functions of the ISO network layer.

• Network Interface: This layer spans the lower part of the ISO network layer
and all of the data-link layer. The protocols involved here depend on the
physical network type. The ARPANET uses the IMP-Host protocols, whereas
an Ethernet uses Ethernet protocols.

• Network Hardware: The ARM is primarily concerned with software, so
there is no explicit network hardware layer; however, any actual network
will have hardware corresponding to the ISO physical layer.

The networking framework in FreeBSD is more generalized than is either the
ISO model or the ARM, although it is most closely related to the ARM; see Figure
A.11.

User processes communicate with network protocols (and thus with other
processes on other machines) via the socket facility, which corresponds to the ISO
Session layer, as it is responsible for setting up and controlling communications.

Sockets are supported by protocols—possibly by several, layered one on
another. A protocol may provide services such as reliable delivery, suppression
of duplicate transmissions, flow control, or addressing, depending on the socket
type being supported and the services required by any higher protocols.

A protocol may communicate with another protocol or with the network
interface that is appropriate for the network hardware. There is little restriction
in the general framework on what protocols may communicate with what other

A.9 Interprocess Communication 851

ISO
reference
model

ARPANET
reference
model

4.2BSD
layers

example
layering

application

presentation

session

transport

network
data link

hardware

process
applications

host–host

network
interface

network
hardware

protocol

network
interfaces

network
hardware

sockets

user programs
and libraries

Ethernet
driver

interlan
controller

sock_stream

telnet

TCP

IP

Figure A.11 Network reference models and layering.

protocols, or on how many protocols may be layered on top of one another. The
user process may, by means of the raw socket type, directly access any layer
of protocol from the uppermost used to support one of the other socket types,
such as streams, down to a raw network interface. This capability is used by
routing processes and also for new protocol development.

There tends to be one network-interface driver per network controller type.
The network interface is responsible for handling characteristics specific to the
local network being addressed. This arrangement ensures that the protocols
using the interface do not need to be concerned with these characteristics.

The functions of the network interface depend largely on the network hard-
ware, which is whatever is necessary for the network to which it is connected.
Some networks may support reliable transmission at this level, but most do not.
Some networks provide broadcast addressing, but many do not.

The socket facility and the networking framework use a common set of
memory buffers, or mbufs. These are intermediate in size between the large
buffers used by the block I/O system and the C-lists used by character devices.
An mbuf is 128 bytes long, 112 bytes of which may be used for data; the rest is
used for pointers to link the mbuf into queues and for indicators of how much
of the data area is actually in use.

Data are ordinarily passed between layers (socket-protocol, protocol-
protocol, or protocol-network interface) in mbufs. This ability to pass the
buffers containing the data eliminates some data copying, but there is still
frequently a need to remove or add protocol headers. It is also convenient and
efficient for many purposes to be able to hold data that occupy an area the size
of the memory-management page. Thus, it is possible for the data of an mbuf to
reside not in the mbuf itself, but rather elsewhere in memory. There is an mbuf
page table for this purpose, as well as a pool of pages dedicated to mbuf use.

852 Appendix A The FreeBSD System

A.10 Summary

The early advantages of UNIX were that this system was written in a high-
level language, was distributed in source form, and had provided powerful
operating-system primitives on an inexpensive platform. These advantages
led to UNIX’s popularity at educational, research, and government institutions,
and eventually in the commercial world. This popularity first produced many
strains of UNIX with variant and improved facilities.

UNIX provides a file system with tree-structured directories. Files are
supported by the kernel as unstructured sequences of bytes. Direct access and
sequential access are supported through system calls and library routines.

Files are stored as an array of fixed-size data blocks with perhaps a trailing
fragment. The data blocks are found by pointers in the inode. Directory entries
point to inodes. Disk space is allocated from cylinder groups to minimize head
movement and to improve performance.

UNIX is a multiprogrammed system. Processes can easily create new
processes with the fork system call. Processes can communicate with pipes or,
more generally, sockets. They may be grouped into jobs that may be controlled
with signals.

Processes are represented by two structures: the process structure and
the user structure. CPU scheduling is a priority algorithm with dynamically
computed priorities that reduces to round-robin scheduling in the extreme case.

FreeBSD memory management is swapping supported by paging. A
pagedaemon process uses a modified second-chance page-replacement algorithm
to keep enough free frames to support the executing processes.

Page and file I/O uses a block buffer cache to minimize the amount of actual
I/O. Terminal devices use a separate character buffering system.

Networking support is one of the most important features in FreeBSD. The
socket concept provides the programming mechanism to access other processes,
even across a network. Sockets provide an interface to several sets of protocols.

Exercises

A.1 How were the design goals of UNIX different from those of other operat-
ing systems during the early stages of UNIX development?

A.2 Why are there many different versions of UNIX currently available? In
what ways is this diversity an advantage to UNIX? In what ways is it a
disadvantage?

A.3 What are the advantages and disadvantages of writing an operating
system in a high-level language, such as C?

A.4 In what circumstances is the system-call sequence fork execve most
appropriate? When is vfork preferable?

Bibliographical Notes 853

A.5 Does FreeBSD give scheduling priority to I/O or CPU-bound processes?
For what reason does it differentiate between these categories, and why
is one given priority over the other? How does it know which of these
categories fits a given process?

A.6 Early UNIX systems used swapping for memory management, whereas
FreeBSD uses paging and swapping. Discuss the advantages and disad-
vantages of the two memory methods.

A.7 Describe the modifications to a file system that the FreeBSD makes when
a process requests the creation of a new file /tmp/foo and writes to that file
sequentially until the file size reaches 20K.

A.8 Directory blocks in FreeBSD are written synchronously when they are
changed. Consider what would happen if they were written asyn-
chronously. Describe the state of the file system if a crash occurred after
all the files in a directory were deleted but before the directory entry was
updated on disk.

A.9 Describe the process that is needed to recreate the free list after a crash in
4.1BSD.

A.10 What effects on system performance would the following changes to
FreeBSD have? Explain your answers.

a. Clustering disk I/O into larger chunks

b. Implementing and using shared memory to pass data between pro-
cesses, rather than using RPC or sockets

c. Using the ISO seven-layer networking model, rather than the ARM
network model

A.11 What socket type should be used to implement an intercomputer file-
transfer program? What type should be used for a program that periodi-
cally tests to see whether another computer is up on the network? Explain
your answer.

Bibliographical Notes

The best general description of the distinctive features of UNIX is still that
presented by Ritchie and Thompson [1974]. Much of the history of UNIX was
given in Ritchie [1979] . A critique of UNIX was offered by Blair et al. [1985].
The two main modern versions of UNIX are 4.3BSD and System V. System V
internals were described at length in Bach [1987]. The authoritative treatment
of the design and implementation of 4.3BSD is that by Leffler et al. [1989].

854 Appendix A The FreeBSD System

Possibly the best book on general programming under UNIX, especially on
the use of the shell and facilities such as yacc and sed, is that by Kernighan and
Pike [1984]. Systems programming was covered by Stevens [1992]. Another
text of interest is Bourne [1983]. The programming language of choice under
UNIX is C Kernighan and Ritchie [1988]. C is also the system’s implementation
language. The Bourne shell was described in Bourne [1978]. The Korn shell was
described in Korn [1983].

The set of documentation that comes with UNIX systems is called the UNIX
Programmer’s Manual (UPM) and is traditionally organized in two volumes.
Volume 1 contains short entries for every command, system call, and subroutine
package in the system, and is also available on-line via the man command.
Volume 2, Supplementary Documents (usually divided into Volumes 2A and 2B
for convenience of binding), contains assorted papers relevant to the system
and manuals for those commands or packages too complex to describe in one or
two pages. Berkeley systems add Volume 2C to contain documents concerning
Berkeley-specific features.

The Version 7 file system was described in Thompson [1978], and the 4.2BSD
file system was described in McKusick et al. [1984]. A crash-resistant UNIX file
system was described by Anyanwu and Marshall [1986]. The basic reference
for process-management is Thompson [1978]. The 3BSD memory-management
system was described in Babaoglu and Joy [1969], and some 4.3BSD memory-
management developments were described in McKusick and Karels [1988]. The
I/O system was described in Thompson [1978].

A description of the UNIX operating-system security was given by Grampp
and Morris [1984] and by Wood and Kochan [1985].

Two useful papers on communications under 4.2BSD are those by [Leffler et
al. 1978, 1983] , both in UPM Volume 2C.

The ISO Reference Model was given in [ISO 1981] . The ARPANET Reference
Model was set forth in Cerf and Cain [1983]. The Internet and its protocols
were described in Comer [2000], Comer and Stevens [1991] and Comer and
Stevens [1993]. UNIX network programming was described thoroughly in
Stevens [1997] and Stevens [1998]. The general state of networks was given
in Quarterman [1990].

There are many useful papers in the two special issues of The Bell System
Technical Journal on UNIX [BSTJ 1978, BSTJ 1984]. Other papers of interest have
appeared at various USENIX conferences and are available in the proceedings of
those conferences, as well as in the USENIX-refereed journal, Computer Systems.

Several textbooks describing variants of the UNIX system are those by Holt
[1983], discussing the Tunis operating system; [Comer 1984, 1987] , discussing
the Xinu operating system; and Tanenbaum and Woodhull [1997], describing
the Minix operating system.

FreeBSD is described in The freebsd Handbook FreeBSD [1999] and may be
downloaded from http://www.freebsd.org/.

Appendix B

THE MACH
SYSTEM

The Mach operating system is designed to incorporate the many recent inno-
vations in operating-system research to produce a fully functional, technically
advanced system. Unlike UNIX, which was developed without regard for
multiprocessing, Mach incorporates multiprocessing support throughout. Its
multiprocessing support is also exceedingly flexible, ranging from shared mem-
ory systems to systems with no memory shared between processors. Mach is
designed to run on computer systems ranging from one to thousands of proces-
sors. In addition, Mach is easily ported to many varied computer architectures.
A key goal of Mach is to be a distributed system capable of functioning on
heterogeneous hardware.

Although many experimental operating systems are being designed, built,
and used, Mach is better able to satisfy the needs of the masses than the others
are because it offers full compatibility with UNIX 4.3BSD. As such, it provides a
unique opportunity for us to compare two functionally similar, but internally
dissimilar, operating systems. The order and contents of the presentation of
Mach is different from that of UNIX to reflect the differing emphasis of the two
systems. There is no section on the user interface, because that component is
similar in 4.3BSD when running the BSD server. As we shall see, Mach provides
the ability to layer emulation of other operating systems as well, and they can
even run concurrently.

B.1 History
Mach traces its ancestry to the Accent operating system developed at Carnegie
Mellon University (CMU). Although Accent pioneered a number of novel oper-

855

856 Appendix B The Mach System

ating system concepts, its utility was limited by its inability to execute UNIX
applications and its strong ties to a single hardware architecture that made it
difficult to port. Mach’s communication system and philosophy are derived
from Accent, but many other significant portions of the system (for example, the
virtual memory system, task and thread management) were developed from
scratch. An important goal of the Mach effort was support for multiprocessors.

Mach’s development followed an evolutionary path from BSD UNIX sys-
tems. Mach code was initially developed inside the 4.2BSD kernel, with BSD
kernel components being replaced by Mach components as the Mach compo-
nents were completed. The BSD components were updated to 4.3BSD when that
became available. By 1986, the virtual memory and communication subsys-
tems were running on the DEC VAX computer family, including multiprocessor
versions of the VAX. Versions for the IBM RT/PC and for SUN 3 workstations
followed shortly. 1987 saw the completion of the Encore Multimax and Sequent
Balance multiprocessor versions, including task and thread support, as well as
the first official releases of the system, Release 0 and Release 1.

Through Release 2, Mach provides compatibility with the corresponding
BSD systems by including much of BSD’s code in the kernel. The new features
and capabilities of Mach make the kernels in these releases larger than the
corresponding BSD kernels. Mach 3 (Figure B.1) moves the BSD code outside
of the kernel, leaving a much smaller microkernel. This system implements
only basic Mach features in the kernel; all UNIX-specific code has been evicted
to run in user-mode servers. Excluding UNIX-specific code from the kernel
allows replacement of BSD with another operating system, or the simultaneous
execution of multiple operating-system interfaces on top of the microkernel.
In addition to BSD, user-mode implementations have been developed for DOS,
the Macintosh operating system, and OSF/1. This approach has similarities
to the virtual-machine concept, but the virtual machine is defined by software
(the Mach kernel interface), rather than by hardware. As of Release 3.0, Mach

Mach

tasks and
threads

IPC virtual
memory

scheduling

4.3 BSD

OSF/1

HPUX

OS/2

database
system

Figure B.1 Mach 3 structure.

B.2 Design Principles 857

became available on a wide variety of systems, including single-processor SUN,
Intel, IBM, and DEC machines, and multiprocessor DEC, Sequent, and Encore
systems.

Mach was propelled into the forefront of industry attention when the Open
Software Foundation (OSF) announced in 1989 that it would use Mach 2.5 as the
basis for its new operating system, OSF/1. The initial release of OSF/1 occurred
a year later, and now competes with UNIX System V, Release 4, the operating
system of choice among UNIX International (UI) members. OSF members include
key technological companies such as IBM, DEC, and HP. Mach 2.5 is also the
basis for the operating system on the NeXT workstation, the brainchild of Steve
Jobs, of Apple Computer fame. OSF is evaluating Mach 3 as the basis for a
future operating-system release, and research on Mach continues at CMU and
OSF, and elsewhere.

B.2 Design Principles

The Mach operating system was designed to provide basic mechanisms that
most current operating systems lack. The goal is to design an operating system
that is BSD compatible and, in addition, excels in the following areas.

• Support for diverse architectures, including multiprocessors with vary-
ing degrees of shared memory access: Uniform Memory Access (UMA),
Non-Uniform Memory Access (NUMA), and No Remote Memory Access
(NORMA)

• Ability to function with varying intercomputer network speeds, from wide-
area networks to high-speed local-area networks and tightly coupled mul-
tiprocessors

• Simplified kernel structure, with a small number of abstractions; in turn
these abstractions are sufficiently general to allow other operating systems
to be implemented on top of Mach

• Distributed operation, providing network transparency to clients and an
object-oriented organization both internally and externally

• Integrated memory management and interprocess communication, to pro-
vide both efficient communication of large numbers of data, as well as
communication-based memory management

• Heterogeneous system support, to make Mach widely available and inter-
operable among computer systems from multiple vendors

The designers of Mach have been heavily influenced by BSD (and by UNIX
in general), whose benefits include

858 Appendix B The Mach System

• A simple programmer interface, with a good set of primitives and a consis-
tent set of interfaces to system facilities

• Easy portability to a wide class of uniprocessors

• An extensive library of utilities and applications

• The ability to combine utilities easily via pipes

Of course, BSD was seen as having several drawbacks that need to be redressed:

• A kernel that has become the repository of many redundant features—and
that consequently is difficult to manage and modify

• Original design goals that made it difficult to provide support for multi-
processors, distributed systems, and shared program libraries; for instance,
because the kernel was designed for uniprocessors, it has no provisions for
locking code or data that other processors might be using

• Too many fundamental abstractions, providing too many similar, compet-
ing means to accomplish the same task

It should be clear that the development of Mach continues to be a huge
undertaking. The benefits of such a system are equally large, however. The
operating system runs on many existing uni- and multiprocessor architectures,
and can be easily ported to future ones. It makes research easier, because
computer scientists can add features via user-level code, instead of having
to write their own tailor-made operating system. Areas of experimentation
include operating systems, databases, reliable distributed systems, multipro-
cessor languages, security, and distributed artificial intelligence. In its current
instantiation, the Mach system is usually as efficient as are other major versions
of UNIX when performing similar tasks.

B.3 System Components

To achieve the design goals of Mach, the developers reduced the operating-
system functionality to a small set of basic abstractions, out of which all other
functionality can be derived. The Mach approach is to place as little as possible
within the kernel, but to make what is there powerful enough that all other
features can be implemented at user level.

Mach’s design philosophy is to have a simple, extensible kernel, concen-
trating on communication facilities. For instance, all requests to the kernel, and
all data movement among processes, are handled through one communication
mechanism. By limiting all data operations to one mechanism, Mach is able to
provide systemwide protection to its users by protecting the communications

B.3 System Components 859

mechanism. Optimizing this one communications path can result in significant
performance gains, and is simpler than trying to optimize several paths. Mach
is extensible, because many traditionally kernel-based functions can be imple-
mented as user-level servers. For instance, all pagers (including the default
pager) can be implemented externally and called by the kernel for the user.

Mach is an example of an object-oriented system where the data and the
operations that manipulate that data are encapsulated into an abstract object.
Only the operations of the object are able to act on the entities defined in
it. The details of how these operations are implemented are hidden, as are
the internal data structures. Thus, a programmer can use an object only by
invoking its defined, exported operations. A programmer can change the
internal operations without changing the interface definition, so changes and
optimizations do not affect other aspects of system operation. The object-
oriented approach supported by Mach allows objects to reside anywhere in
a network of Mach systems, transparent to the user. The port mechanism,
discussed later in this section, makes all of this possible.

Mach’s primitive abstractions are the heart of the system, and are as fol-
lows:

• A task is an execution environment that provides the basic unit of resource
allocation. A task consists of a virtual address space and protected access
to system resources via ports. A task may contain one or more threads.

• A thread is the basic unit of execution, and must run in the context of a
task (which provides the address space). All threads within a task share
the tasks’ resources (ports, memory, and so on). There is no notion of a
”process” in Mach. Rather, a traditional process would be implemented as
a task with a single thread of control.

• A port is the basic object reference mechanism in Mach, and is imple-
mented as a kernel-protected communication channel. Communication is
accomplished by sending messages to ports; messages are queued at the
destination port if no thread is immediately ready to receive them. Ports
are protected by kernel-managed capabilities, or port rights; a task must
have a port right to send a message to a port. The programmer invokes an
operation on an object by sending a message to a port associated with that
object. The object being represented by a port receives the messages.

• A port set is a group of ports sharing a common message queue. A thread
can receive messages for a port set, and thus service multiple ports. Each
received message identifies the individual port (within the set) that it was
received from; the receiver can use this to identify the object referred to by
the message.

• A message is the basic method of communication between threads in Mach.
It is a typed collection of data objects; for each object, it may contain

860 Appendix B The Mach System

the actual data or a pointer to out-of-line data. Port rights are passed in
messages; passing port rights in messages is the only way to move them
among tasks. (Passing a port right in shared memory does not work,
because the Mach kernel will not permit the new task to use a right obtained
in this manner.)

• A memory object is a source of memory; tasks may access it by mapping
portions (or the entire object) into their address spaces. The object may
be managed by a user-mode external memory manager. One example is
a file managed by a file server; however, a memory object can be any
object for which memory-mapped access makes sense. A mapped buffer
implementation of a UNIX pipe is one example.

Figure B.2 illustrates these abstractions, which we shall elaborate in the remain-
der of this chapter.

An unusual feature of Mach, and a key to the system’s efficiency, is the
blending of memory and interprocess-communication features. Whereas some
other distributed systems (such as Solaris, with its NFS features) have special-
purpose extensions to the file system to extend it over a network, Mach pro-
vides a general-purpose, extensible merger of memory and messages at the
heart of its kernel. This feature not only allows Mach to be used for distributed

task

data region

text region

threads

program
counter

memory
object

message

port

port set

secondary storage

Figure B.2 Mach’s basic abstractions.

B.3 System Components 861

and parallel programming, but also helps in the implementation of the kernel
itself.

Mach connects memory management and communication (IPC) by allow-
ing each to be used in the implementation of the other. Memory management is
based on the use of memory objects. A memory object is represented by a port (or
ports), and IPC messages are sent to this port to request operations (for example,
pagein, pageout) on the object. Because IPC is used, memory objects may reside
on remote systems and be accessed transparently. The kernel caches the con-
tents of memory objects in local memory. Conversely, memory-management
techniques are used in the implementation of message passing. Where possible,
Mach passes messages by moving pointers to shared memory objects, rather
than by copying the object itself.

IPC tends to involve considerable system overhead and is generally less
efficient than is communication accomplished through shared memory, for
intrasystem messages. Because Mach is a message-based kernel, it is important
that message handling be carried out efficiently. Most of the inefficiency of
message handling in traditional operating systems is due to either the copying
of messages from one task to another (if the message is intracomputer) or
low network transfer speed (for intercomputer messages). To solve these
problems, Mach uses virtual-memory remapping to transfer the contents of
large messages. In other words, the message transfer modifies the receiving
task’s address space to include a copy of the message contents. Virtual copy, or
copy-on-write, techniques are used to avoid or delay the actual copying of the
data. There are several advantages to this approach:

• Increased flexibility in memory management to user programs

• Greater generality, allowing the virtual copy approach to be used in tightly
and loosely coupled computers

• Improved performance over UNIX message passing

• Easier task migration; because ports are location independent, a task and
all its ports can be moved from one machine to another; all tasks that pre-
viously communicated with the moved task can continue to do so because
they reference a task by only its ports and communicate via messages to
these ports

We shall detail the operation of process management, IPC, and memory
management. Then, we shall discuss Mach’s chameleonlike ability to support
multiple operating-system interfaces.

862 Appendix B The Mach System

B.4 Process Management

A task can be thought of as a traditional process that does not have an instruc-
tion pointer or a register set. A task contains a virtual address space, a set of
port rights, and accounting information. A task is a passive entity that does
nothing unless it has one or more threads executing in it.

B.4.1 Basic Structure

A task containing one thread is similar to a UNIX process. Just as a fork system
call produces a new UNIX process, Mach creates a new task to emulate this
behavior. The new task’s memory is a duplicate of the parent’s address space,
as dictated by the inheritance attributes of the parent’s memory. The new task
contains one thread, which is started at the same point as the creating fork call
in the parent. Threads and tasks may also be suspended and resumed.

Threads are especially useful in server applications, which are common in
UNIX, since one task can have multiple threads to service multiple requests
to the task. They also allow efficient use of parallel computing resources.
Rather than having one process on each processor (with the corresponding
performance penalty and operating-system overhead), a task may have its
threads spread among parallel processors. Threads also add efficiency to user-
level programs. For instance, in UNIX, an entire process must wait when a
page fault occurs, or when a system call is executed. In a task with multiple
threads, only the thread that causes the page fault or executes a system call
is delayed; all other threads continue executing. Because Mach has kernel-
supported threads (see Chapter 5), the threads have some cost associated with
them. They must have supporting data structures in the kernel, and more
complex kernel-scheduling algorithms must be provided. These algorithms
and thread states are discussed in Chapter 5.

At the user level, threads may be in one of two states.

• Running: The thread is either executing or waiting to be allocated a
processor. A thread is considered to be running even if it is blocked within
the kernel (waiting for a page fault to be satisfied, for instance).

• Suspended: The thread is neither executing on a processor nor waiting to
be allocated a processor. A thread can resume its execution only if it is
returned to the running state.

These two states are also associated with a task. An operation on a task affects
all threads in a task, so suspending a task involves suspending all the threads
in it. Task and thread suspensions are separate, independent mechanisms,
however, so resuming a thread in a suspended task does not resume the task.

Mach provides primitives from which thread-synchronization tools can
be built. This primitives provision is consistent with Mach’s philosophy of

B.4 Process Management 863

providing minimum yet sufficient functionality in the kernel. The Mach IPC
facility can be used for synchronization, with processes exchanging messages
at rendezvous points. Thread-level synchronization is provided by calls to
start and stop threads at appropriate times. A suspend count is kept for each
thread. This count allows multiple suspend calls to be executed on a thread,
and only when an equal number of resume calls occur is the thread resumed.
Unfortunately, this feature has its own limitation. Because it is an error for a
start call to be executed before a stop call (the suspend count would become
negative), these routines cannot be used to synchronize shared data access.
However, wait and signal operations associated with semaphores, and used for
synchronization, can be implemented via the IPC calls. We discuss this method
in Section B.5.

B.4.2 The C Threads Package

Mach provides low-level but flexible routines instead of polished, large, and
more restrictive functions. Rather than making programmers work at this low
level, Mach provides many higher-level interfaces for programming in C and
other languages. For instance, the C Threads package provides multiple threads
of control, shared variables, mutual exclusion for critical sections, and condition
variables for synchronization. In fact, C Threads is one of the major influences
of the POSIX P Threads standard, which many operating systems are being
modified to support. As a result there are strong similarities between the C
Threads and P Threads programming interfaces. The thread-control routines
include calls to perform these tasks:

• Create a new thread within a task, given a function to execute and param-
eters as input. The thread then executes concurrently with the creating
thread, which receives a thread identifier when the call returns.

• Destroy the calling thread, and return a value to the creating thread.

• Wait for a specific thread to terminate before allowing the calling thread
to continue. This call is a synchronization tool, much like the UNIX wait
system calls.

• Yield use of a processor, signaling that the scheduler may run another
thread at this point. This call is also useful in the presence of a preemptive
scheduler, as it can be used to relinquish the CPU voluntarily before the time
quantum (scheduling interval) expires if a thread has no use for the CPU.

Mutual exclusion is achieved through the use of spinlocks, as were discussed
in Chapter 7. The routines associated with mutual exclusion are these:

• The routine mutex alloc dynamically creates a mutex variable.

• The routine mutex free deallocates a dynamically created mutex variable.

864 Appendix B The Mach System

• The routine mutex lock locks a mutex variable. The executing thread loops
in a spinlock until the lock is attained. A deadlock results if a thread
with a lock tries to lock the same mutex variable. Bounded waiting is
not guaranteed by the C Threads package. Rather, it is dependent on the
hardware instructions used to implement the mutex routines.

• The routine mutex unlock unlocks a mutex variable, much like the typical
signal operation of a semaphore.

General synchronization without busy waiting can be achieved through the use
of condition variables, which can be used to implement a condition critical region
or a monitor, as was described in Chapter 7. A condition variable is associated
with a mutex variable, and reflects a Boolean state of that variable. The routines
associated with general synchronization are these:

• The routine condition alloc dynamically allocates a condition variable.

• The routine condition free deletes a dynamically created condition variable
allocated as result of condition alloc.

• The routine condition wait unlocks the associated mutex variable, and
blocks the thread until a condition signal is executed on the condition vari-
able, indicating that the event being waited for may have occurred. The
mutex variable is then locked, and the thread continues. A condition signal
does not guarantee that the condition still holds when the unblocked thread
finally returns from its condition wait call, so the awakened thread must
loop, executing the condition wait routine until it is unblocked and the
condition holds.

As an example of the C Threads routines, consider the bounded-buffer
synchronization problem of Section 7.5.1. The producer and consumer are
represented as threads that access the common bounded-buffer pool. We use
a mutex variable to protect the buffer while it is being updated. Once we have
exclusive access to the buffer, we use condition variables to block the producer
thread if the buffer is full, and to block the consumer thread if the buffer is
empty. Although this program normally would be written in the C language on
a Mach system, we shall use the familiar Pascal-like syntax of previous chapters
for clarity. As in Chapter 7, we assume that the buffer consists of n slots, each
capable of holding one item. The mutex semaphore provides mutual exclusion
for accesses to the buffer pool and is initialized to the value 1. The empty and
full semaphores count the number of empty and full buffers, respectively. The
semaphore empty is initialized to the value n; the semaphore full is initialized to
the value 0. The condition variable nonempty is true while the buffer has items
in it, and nonfull is true if the buffer has an empty slot.

The first step includes the allocation of the mutex and condition variables:

mutex alloc(mutex); condition alloc(nonempty, nonfull);

B.4 Process Management 865

repeat
...

produce an item into nextp
...

mutex lock(mutex);
while(full)

condition wait(nonfull, mutex);
...

add nextp to buffer
...

condition signal(nonempty);
mutex unlock(mutex);

until false;

Figure B.3 The structure of the producer process.

The code for the producer thread is shown in Figure B.3; the code for the
consumer thread is shown in Figure B.4. When the program terminates, the
mutex and condition variables need to be deallocated:

mutex free(mutex); condition free(nonempty, nonfull);

B.4.3 The CPU Scheduler

The CPU scheduler for a thread-based multiprocessor operating system is more
complex than are its process-based relatives. There are generally more threads
in a multithreaded system than there are processes in a multitasking system.
Keeping track of multiple processors is also difficult, and is a relatively new area

repeat
mutex lock(mutex);
while(empty)

condition wait(nonempty, mutex);
...

remove an item from the buffer to nextc
...

condition signal(nonfull);
mutex unlock(mutex);

...
consume the item in nextc

...
until false;

Figure B.4 The structure of the consumer process.

866 Appendix B The Mach System

of research. Mach uses a simple policy to keep the scheduler manageable. Only
threads are scheduled, so no knowledge of tasks is needed in the scheduler. All
threads compete equally for resources, including time quanta.

Each thread has an associated priority number ranging from 0 through 127,
which is based on the exponential average of its usage of the CPU. That is, a
thread that recently used the CPU for a large amount of time has the lowest
priority. Mach uses the priority to place the thread in one of 32 global run
queues. These queues are searched in priority order for waiting threads when
a processor becomes idle. Mach also keeps per-processor, or local, run queues.
A local run queue is used for threads that are bound to an individual processor.
For instance, a device driver for a device connected to an individual CPU must
run on only that CPU.

Instead of there being a central dispatcher that assigns threads to pro-
cessors, each processor consults the local and global run queues to select the
appropriate next thread to run. Threads in the local run queue have absolute
priority over those in the global queues, because it is assumed that they are
performing some chore for the kernel. The run queues (like most other objects
in Mach) are locked when they are modified to avoid simultaneous changes by
multiple processors. To speed dispatching of threads on the global run queue,
Mach maintains a list of idle processors.

Additional scheduling difficulties arise from the multiprocessor nature of
Mach. A fixed time quantum is not appropriate because there may be fewer
runable threads than there are available processors, for instance. It would be
wasteful to interrupt a thread with a context switch to the kernel when that
thread’s quantum runs out, only to have the thread be placed right back in
the running state. Thus, instead of using a fixed-length quantum, Mach varies
the size of the time quantum inversely with the total number of threads in the
system. It keeps the time quantum over the entire system constant, however.
For example, in a system with 10 processors, 11 threads, and a 100-millisecond
quantum, a context switch needs to occur on each processor only once per
second to maintain the desired quantum.

Of course, there are still complications to be considered. Even relinquishing
the CPU while waiting for a resource is more difficult than it is on traditional
operating systems. First, a call must be issued by a thread to alert the scheduler
that the thread is about to block. This alert avoids race conditions and dead-
locks, which could occur when the execution takes place in a multiprocessor
environment. A second call actually causes the thread to be moved off the run
queue until the appropriate event occurs. There are many other internal thread
states that are used by the scheduler to control thread execution.

B.4.4 Exception Handling

Mach was designed to provide a single, simple, consistent exception-handling
system, with support for standard as well as user-defined exceptions. To avoid

B.4 Process Management 867

redundancy in the kernel, Mach uses kernel primitives whenever possible. For
instance, an exception handler is just another thread in the task in which the
exception occurs. Remote procedure call (RPC) messages are used to synchro-
nize the execution of the thread causing the exception (the “victim”) and that of
the handler, and to communicate information about the exception between the
victim and handler. Mach exceptions are also used to emulate the BSD signal
package, as described later in this section.

Disruptions to normal program execution come in two varieties: internally
generated exceptions and external interrupts. Interrupts are asynchronously
generated disruptions of a thread or task, whereas exceptions are caused by the
occurrence of unusual conditions during a thread’s execution. Mach’s general-
purpose exception facility is used for error detection and debugger support.
This facility is also useful for other reasons, such as taking a core dump of a
bad task, allowing tasks to handle their own errors (mostly arithmetic), and
emulating instructions not implemented in hardware.

Mach supports two different granularities of exception handling. Error
handling is supported by per-thread exception handling, whereas debuggers
use per-task handling. It makes little sense to try to debug only one thread, or to
have exceptions from multiple threads invoke multiple debuggers. Aside from
this distinction, the only other difference between the two types of exceptions
lies in their inheritance from a parent task. Taskwide exception-handling
facilities are passed from the parent to child tasks, so debuggers are able to
manipulate an entire tree of tasks. Error handlers are not inherited, and default
to no handler at thread- and task-creation time. Finally, error handlers take
precedence over debuggers if the exceptions occur simultaneously. The reason
for this approach is that error handlers are normally part of the task, and
therefore should execute normally even in the presence of a debugger.

Exception handling proceeds as follows:

• The victim thread causes notification of an exception’s occurrence via a raise
RPC message being sent to the handler.

• The victim then calls a routine to wait until the exception is handled.

• The handler receives notification of the exception, usually including infor-
mation about the exception, the thread, and the task causing the exception.

• The handler performs its function according to the type of exception.
The handler’s action involves clearing the exception, causing the victim to
resume, or terminating the victim thread.

To support the execution of BSD programs, Mach needs to support BSD-
style signals. Signals provide software generated interrupts and exceptions.
Unfortunately, signals are of limited functionality in multithreaded operating
systems. The first problem is that, in UNIX, a signal’s handler must be a routine

868 Appendix B The Mach System

in the process receiving the signal. If the signal is caused by a problem in
the process itself (for example, a division by zero), the problem cannot be
remedied, because a process has limited access to its own context. A second,
more troublesome aspect of signals is that they were designed for only single-
threaded programs. For instance, it makes no sense for all threads in a task to
get a signal, but how can a signal be seen by only one thread?

Because the signal system must work correctly with multithreaded appli-
cations for Mach to run 4.3BSD programs, signals could not be abandoned.
Producing a functionally correct signal package required several rewrites of the
code, however! A final problem with UNIX signals is that they can be lost.
This loss occurs when another signal of the same type occurs before the first is
handled. Mach exceptions are queued as a result of their RPC implementation.

Externally generated signals, including those sent from one BSD process to
another, are processed by the BSD server section of the Mach 2.5 kernel. Their
behavior is therefore the same as it is under BSD. Hardware exceptions are a
different matter, because BSD programs expect to receive hardware exceptions
as signals. Therefore, a hardware exception caused by a thread must arrive at
the thread as a signal. So that this result is produced, hardware exceptions are
converted to exception RPCs. For tasks and threads that do not make explicit
use of the Mach exception-handling facility, the destination of this RPC defaults
to an in-kernel task. This task has only one purpose: Its thread runs in a
continuous loop, receiving these exception RPCs. For each RPC, it converts the
exception into the appropriate signal, which is sent to the thread that caused the
hardware exception. It then completes the RPC, clearing the original exception
condition. With the completion of the RPC, the initiating thread reenters the run
state. It immediately sees the signal and executes its signal-handling code. In
this manner, all hardware exceptions begin in a uniform way—as exceptions
RPCs. Threads not designed to handle such exceptions, however, receive the
exceptions as they would on a standard BSD system—as signals. In Mach
3.0, the signal-handling code is moved entirely into a server, but the overall
structure and flow of control is similar to those of Mach 2.5.

B.5 Interprocess Communication

Most commercial operating systems, such as UNIX, provide communication
between processes, and between hosts with fixed, global names (internet
addresses). There is no location independence of facilities, because any remote
system needing to use a facility must know the name of the system providing
that facility. Usually, data in the messages are untyped streams of bytes. Mach
simplifies this picture by sending messages between location-independent
ports. The messages contain typed data for ease of interpretation. All BSD
communication methods can be implemented with this simplified system.

B.5 Interprocess Communication 869

The two components of Mach IPC are ports and messages. Almost everything
in Mach is an object, and all objects are addressed via their communications
ports. Messages are sent to these ports to initiate operations on the objects
by the routines that implement the objects. By depending on only ports
and messages for all communication, Mach delivers location independence of
objects and security of communication. Data independence is provided by the
NetMsgServer task, as discussed later. Mach ensures security by requiring that
message senders and receivers have rights. A right consists of a port name
and a capability (send or receive) on that port, and is much like a capability in
object-oriented systems. There can be only one task with receive rights to any
given port, but many tasks may have send rights. When an object is created, its
creator also allocates a port to represent the object, and obtains the access rights
to that port. Rights can be given out by the creator of the object (including the
kernel), and are passed in messages. If the holder of a receive right sends that
right in a message, the receiver of the message gains the right and the sender
loses it. A task may allocate ports to allow access to any objects it owns, or for
communication. The destruction of either a port or the holder of the receive
right causes the revocation of all rights to that port, and the tasks holding send
rights can be notified if desired.

B.5.1 Ports

A port is implemented as a protected, bounded queue within the kernel of the
system on which the object resides. If a queue is full, a sender may abort the
send, wait for a slot to become available in the queue, or have the kernel deliver
the message for it.

There are several system calls to provide the port functionality:

• Allocate a new port in a specified task and give the caller’s task all access
rights to the new port. The port name is returned.

• Deallocate a task’s access rights to a port. If the task holds the receive right,
the port is destroyed and all other tasks with send rights are, potentially,
notified.

• Get the current status of a task’s port.

• Create a backup port, which is given the receive right for a port if the task
containing the receive right requests its deallocation (or terminates).

When a task is created, the kernel creates several ports for it. The function
task self returns the name of the port that represents the task in calls to the
kernel. For instance, for a task to allocate a new port, it would call port allocate
with task self as the name of the task that will own the port. Thread creation
results in a similar thread self thread kernel port. This scheme is similar to the

870 Appendix B The Mach System

standard process-id concept found in UNIX. Another port created for a task is
returned by task notify, and is the name of the port to which the kernel will send
event-notification messages (such as notifications of port terminations).

Ports can also be collected into port sets. This facility is useful if one thread
is to service requests coming in on multiple ports (for example, for multiple
objects). A port may be a member of at most one port set at a time, and, if a
port is in a set, it may not be used directly to receive messages. Instead, the
message will be routed to the port set’s queue. A port set may not be passed in
messages, unlike a port. Port sets are objects that serve a purpose similar to the
4.3BSD select system call, but they are more efficient.

B.5.2 Messages

A message consists of a fixed-length header and a variable number of typed
data objects. The header contains the destination’s port name, the name of
the reply port to which return messages should be sent, and the length of the
message (see Figure B.5). The data in the message (in-line data) were limited to
less than 8K in Mach 2.5 systems, but Mach 3.0 has no limit. Any data exceeding
that limit must be sent in multiple messages, or more likely via reference by a
pointer in a message (out-of-line data, as we shall describe shortly). Each data
section may be a simple type (numbers or characters), port rights, or pointers
to out-of-line data. Each section has an associated type, so that the receiver

destination port
reply port
size / operation
pure typed data
port rights
out-of-line-data

message control

. . .

memory cache object memory cache object

port

message queue

port

messagemessage

Figure B.5 Mach messages.

B.5 Interprocess Communication 871

can unpack the data correctly even if it uses a byte ordering different from that
used by the sender. The kernel also inspects the message for certain types of
data. For instance, the kernel must process port information within a message,
either by translating the port name into an internal port data structure address,
or by forwarding it for processing to the NetMsgServer, as we shall explain.

The use of pointers in a message provides the means to transfer the entire
address space of a task in one single message. The kernel also must process
pointers to out-of-line data, as a pointer to data in the sender’s address space
would be invalid in the receiver’s—especially if the sender and receiver reside
on different systems! Generally, systems send messages by copying the data
from the sender to the receiver. Because this technique can be inefficient,
especially in the case of large messages, Mach optimizes this procedure. The
data referenced by a pointer in a message being sent to a port on the same
system are not copied between the sender and the receiver. Instead, the address
map of the receiving task is modified to include a copy-on-write copy of the
pages of the message. This operation is much faster than a data copy, and
makes message passing efficient. In essence, message passing is implemented
via virtual-memory management.

In Version 2.5, this operation was implemented in two phases. A pointer
to a region of memory caused the kernel to map that region of memory into
its own space temporarily, setting the sender’s memory map to copy-on-write
mode to ensure that any modifications did not affect the original version of
the data. When a message was received at its destination, the kernel moved
its mapping to the receiver’s address space, using a newly allocated region of
virtual memory within that task.

In Version 3, this process was simplified. The kernel creates a data structure
that would be a copy of the region if it were part of an address map. On receipt,
this data structure is added to the receiver’s map and becomes a copy accessible
to the receiver.

The newly allocated regions in a task do not need to be contiguous with
previous allocations, so Mach virtual memory is said to be sparse, consisting of
regions of data separated by unallocated addresses. A full message transfer is
shown in Figure B.6.

B.5.3 The NetMsgServer

For a message to be sent between computers, the destination of a message
must be located, and the message must be transmitted to the destination.
UNIX traditionally leaves these mechanisms to the low-level network protocols,
which require the use of statically assigned communication endpoints (for
example, the port number for services based on TCP or UDP). One of Mach’s
tenets is that all objects within the system are location independent, and that the
location is transparent to the user. This tenet requires Mach to provide location-

872 Appendix B The Mach System

send operation

B

P1

kernel mapA map B map

A

receive operation

B

P1

kernel mapA map B map

A

Figure B.6 Mach message transfer.

transparent naming and transport to extend IPC across multiple computers.
This naming and transport are performed by the Network Message Server or
NetMsgServer, a user-level capability-based networking daemon that forwards
messages between hosts. It also provides a primitive networkwide name
service that allows tasks to register ports for lookup by tasks on any other
computer in the network. Mach ports can be transferred only in messages,
and messages must be sent to ports; the primitive name service solves the
problem of transferring the first port that allows tasks on different computers
to exchange messages. Subsequent IPC interactions are fully transparent; the
NetMsgServer tracks all rights and out-of-line memory passed in intercomputer
messages, and arranges for the appropriate transfers. The NetMsgServers
maintain among themselves a distributed database of port rights that have
been transferred between computers and of the ports to which these rights
correspond.

The kernel uses the NetMsgServer when a message needs to be sent to
a port that is not on the kernel’s computer. Mach’s kernel IPC is used to
transfer the message to the local NetMsgServer. The NetMsgServer then uses
whatever network protocols are appropriate to transfer the message to its peer
on the other computer; the notion of a NetMsgServer is protocol-independent,
and NetMsgServers have been built that use various protocols. Of course,
the NetMsgServers involved in a transfer must agree on the protocol used.
Finally, the NetMsgServer on the destination computer uses that kernel’s IPC
to send the message to the correct destination task. The ability to extend local
IPC transparently across nodes is supported by the use of proxy ports. When
a send right is transferred from one computer to another, the NetMsgServer

B.5 Interprocess Communication 873

on the destination computer creates a new port, or proxy, to represent the
original port at the destination. Messages sent to this proxy are received by
the NetMsgServer and are forwarded transparently to the original port; this
procedure is one example of how the NetMsgServers cooperate to make a proxy
indistinguishable from the original port.

Because Mach is designed to function in a network of heterogeneous sys-
tems, it must provide a way to send between systems data that are formatted
in a way that is understandable by both the sender and receiver. Unfortunately,
computers vary the format in which they store types of data. For instance, an
integer on one system might take 2 bytes to store, and the most significant byte
might be stored before the least significant one. Another system might reverse
this ordering. The NetMsgServer therefore uses the type information stored in
a message to translate the data from the sender’s to the receiver’s format. In
this way, all data are represented correctly when they reach their destination.

The NetMsgServer on a given computer accepts RPCs that add, look up, and
remove network ports from the NetMsgServer’s name service. As a security
precaution, a port value provided in an add request must match that in the
remove request for a thread to ask for a port name to be removed from the
database.

As an example of the NetMsgServer’s operation, consider a thread on node
A sending a message to a port that happens to be in a task on node B. The
program simply sends a message to a port to which it has a send right. The
message is first passed to the kernel, which delivers it to its first recipient,
the NetMsgServer on node A. The NetMsgServer then contacts (through its
database information) the NetMsgServer on node B and sends the message.
The NetMsgServer on node B then presents the message to the kernel with the
appropriate local port for node B. The kernel finally provides the message to
the receiving task when a thread in that task executes a msg receive call. This
sequence of events is shown in Figure B.7.

Mach 3.0 provides an alternative to the NetMsgServer as part of its
improved support for NORMA multiprocessors. The NORMA IPC subsystem of
Mach 3.0 implements functionality similar to the NetMsgServer directly in the
Mach kernel, providing much more efficient internode IPC for multicomputers
with fast interconnection hardware. For example, the time-consuming copying
of messages between the NetMsgServer and the kernel is eliminated. Use of
NORMA IPC does not exclude use of the NetMsgServer; the NetMsgServer can
still be used to provide MACH IPC service over networks that link a NORMA
multiprocessor to other computers. In addition to NORMA IPC, Mach 3.0 also
provides support for memory management across a NORMA system, and the
ability for a task in such a system to create child tasks on nodes other than
its own. These features support the implementation of a single-system-image
operating system on a NORMA multiprocessor; the multiprocessor behaves like
one large system, rather than like an assemblage of smaller systems (for both
users and applications).

874 Appendix B The Mach System

sender

kernel

system A

user
process

NetMsg-
server

receiver

kernel

system B

user
process

NetMsg-
server

Figure B.7 Network IPC forwarding by NetMsgServer.

B.5.4 Synchronization Through IPC

The IPC mechanism is extremely flexible, and is used throughout Mach. For
example, it may be used for thread synchronization. A port may be used as a
synchronization variable, and may have n messages sent to it for n resources.
Any thread wishing to use a resource executes a receive call on that port.
The thread will receive a message if the resource is available; otherwise, it
will wait on the port until a message is available there. To return a resource
after use, the thread can send a message to the port. In this regard, receiving
is equivalent to the semaphore operation wait, and sending is equivalent to
signal. This method can be used for synchronizing semaphore operations
among threads in the same task, but cannot be used for synchronization among
tasks, because only one task may have receive rights to a port. For more general-
purpose semaphores, a simple daemon may be written that implements the
same method.

B.6 Memory Management

Given the object-oriented nature of Mach, it is not surprising that a principle
abstraction in Mach is the memory object. Memory objects are used to manage
secondary storage, and generally represent files, pipes, or other data that are
mapped into virtual memory for reading and writing (Figure B.8). Memory
objects may be backed by user-level memory managers, which take the place
of the more traditional kernel-incorporated virtual-memory pager found in

B.6 Memory Management 875

previous entry

address space
start/end

next entry

inheritance

protection
current/max

object

offset therein

map entry

text
initialized

data
uninitialized

data stack

head tail

user
address
space

virtual memory
object

cached
pages

port for
secondary

storage

Figure B.8 Mach virtual memory task address map.

other operating systems. In contrast to the traditional approach of having
the kernel provide management of secondary storage, Mach treats secondary-
storage objects (usually files) as it does all other objects in the system. Each
object has a port associated with it, and may be manipulated by messages
being sent to its port. Memory objects—unlike the memory-management
routines in monolithic, traditional kernels—allow easy experimentation with
new memory-manipulation algorithms.

B.6.1 Basic Structure

The virtual address space of a task is generally sparse, consisting of many holes
of unallocated space. For instance, a memory-mapped file is placed in some set
of addresses. Large messages are also transferred as shared memory segments.
For each of these segments, a section of virtual-memory address is used to
provide the threads with access to the message. As new items are mapped

876 Appendix B The Mach System

or removed from the address space, holes of unallocated memory appear in the
address space.

Mach makes no attempt to compress the address space, although a task
may fail (crash) if it has no room for a requested region in its address space.
Given that address spaces are 4 gigabytes or more, this limitation is not cur-
rently a problem. However, maintaining a regular page table for a 4 gigabyte
address space for each task, especially one with holes in it, would use excessive
amounts of memory (1 megabyte or more). The key to sparse address spaces
is that page-table space is used for only currently allocated regions. When
a page fault occurs, the kernel must check to see whether the page is in a
valid region, rather than simply indexing into the page table and checking the
entry. Although the resulting lookup is more complex, the benefits of reduced
memory-storage requirements and simpler address-space maintenance make
the approach worthwhile.

Mach also has system calls to support standard virtual-memory function-
ality, including the allocation, deallocation, and copying of virtual memory.
When allocating a new virtual-memory object, the thread may provide an
address for the object or may let the kernel choose the address. Physical mem-
ory is not allocated until pages in this object are accessed. The object’s backing
store is managed by the default pager (discussed in Section B.6.2). Virtual-
memory objects are also allocated automatically when a task receives a message
containing out-of-line data.

Associated system calls return information about a memory object in a
task’s address space, change the access protection of the object, and specify
how an object is to be passed to child tasks at the time of their creation (shared,
copy-on-write, or not present).

B.6.2 User-Level Memory Managers
A secondary-storage object is usually mapped into the virtual address space of
a task. Mach maintains a cache of memory-resident pages of all mapped objects,
as in other virtual-memory implementations. However, a page fault occurring
when a thread accesses a nonresident page is executed as a message to the
object’s port. The concept of a memory object being created and serviced by
nonkernel tasks (unlike threads, for instance, which are created and maintained
by only the kernel) is important. The end result is that, in the traditional sense,
memory can be paged by user-written memory managers. When the object is
destroyed, it is up to the memory manager to write back any changed pages
to secondary storage. No assumptions are made by Mach about the content or
importance of memory objects, so the memory objects are independent of the
kernel.

There are several circumstances in which user-level memory managers are
insufficient. For instance, a task allocating a new region of virtual memory
might not have a memory manager assigned to that region, since it does
not represent a secondary-storage object (but must be paged), or a memory

B.6 Memory Management 877

manager could fail to perform pageout. Mach itself also needs a memory
manager to take care of its memory needs. For these cases, Mach provides
a default memory manager. The Mach 2.5 default memory manager uses the
standard file system to store data that must be written to disk, rather than
requiring a separate swap space, as in 4.3BSD. In Mach 3.0 (and OSF/1), the
default memory manager is capable of using either files in a standard filesystem
or dedicated disk partitions. The default memory manager has an interface
similar to that of the user-level ones, but with some extensions to support its
role as the memory manager that can be relied on to perform pageout when
user-level managers fail to do so.

Pageout policy is implemented by an internal kernel thread, the pageout
daemon. A paging algorithm based on FIFO with second chance (Section 10.4.5)
is used to select pages for replacement. The selected pages are sent to the
appropriate manager (either user level or default) for actual pageout. A user-
level manager may be more intelligent than the default manager, and may
implement a different paging algorithm suitable to the object it is backing (that
is, by selecting some other page and forcibly paging it out). If a user-level
manager fails to reduce the resident set of pages when asked to do so by the
kernel, the default memory manager is invoked and it pages out the user-level
manager to reduce the user-level manager’s resident set size. Should the user-
level manager recover from the problem that prevented it from performing its
own pageouts, it will touch these pages (causing the kernel to page them in
again), and can then page them out as it sees fit.

If a thread needs access to data in a memory object (for instance, a file), it
invokes the vm map system call. Included in this system call is a port which
identifies the object, and the memory manager which is responsible for the
region. The kernel executes calls on this port when data are to be read or
written in that region. An added complexity is that the kernel makes these calls
asynchronously, since it would not be reasonable for the kernel to be waiting
on a user-level thread. Unlike the situation with pageout, the kernel has no
recourse if its request is not satisfied by the external memory manager. The
kernel has no knowledge of the contents of an object or of how that object must
be manipulated.

Memory managers are responsible for the consistency of the contents of
a memory object mapped by tasks on different machines (tasks on a single
machine share a single copy of a mapped memory object). Consider a situation
in which tasks on two different machines attempt to modify the same page
of an object concurrently. It is up to the manager to decide whether these
modifications must be serialized. A conservative manager implementing strict
memory consistency would force the modifications to be serialized by granting
write access to only one kernel at a time. A more sophisticated manager could
allow both accesses to proceed concurrently (for example, if the manager knew
that the two tasks were modifying distinct areas within the page, and that it
could merge the modifications successfully at some future time). Note that most

878 Appendix B The Mach System

external memory managers written for Mach (for example, those implementing
mapped files) do not implement logic for dealing with multiple kernels, due to
the complexity of such logic.

When the first vm map call is made on a memory object, the kernel sends
a message to the memory manager port passed in the call, invoking the mem-
ory manager init routine, which the memory manager must provide as part of its
support of a memory object. The two ports passed to the memory manager are a
control port and a name port. The control port is used by the memory manager to
provide data to the kernel (for example, pages to be made resident). Name ports
are used throughout Mach. They do not receive messages, but rather are used
simply as a point of reference and comparison. Finally, the memory object must
respond to a memory manager init call with a memory object set attributes call to
indicate that it is ready to accept requests. When all tasks with send rights to a
memory object relinquish those rights, the kernel deallocates the object’s ports,
thus freeing the memory manager and memory object for destruction.

There are several kernel calls that are needed to support external memory
managers. The vm map call has already been discussed in the paragraph above.
There are also commands to get and set attributes and to provide page-level
locking when it is required (for instance, after a page fault has occurred but
before the memory manager has returned the appropriate data). Another call is
used by the memory manager to pass a page (or multiple pages, if read-ahead
is being used) to the kernel in response to a page fault. This call is necessary
since the kernel invokes the memory manager asynchronously. There are also
several calls to allow the memory manager to report errors to the kernel.

The memory manager itself must provide support for several calls so that it
can support an object. We have already discussed memory object init and others.
When a thread causes a page fault on a memory object’s page, the kernel sends a
memory object data request to the memory object’s port on behalf of the faulting
thread. The thread is placed in wait state until the memory manager either
returns the page in a memory object data provided call, or returns an appropriate
error to the kernel. Any of the pages that have been modified, or any precious
pages that the kernel needs to remove from resident memory (due to page
aging, for instance), are sent to the memory object via memory object data write.
Precious pages are pages that may not have been modified, but that cannot be
discarded as they otherwise would, because the memory manager no longer
retains a copy. The memory manager declares these pages to be precious
and expects the kernel to return them when they are removed from memory.
Precious pages save unnecessary duplication and copying of memory.

Again, there are several other calls for locking, protection information and
modification, and the other details with which all virtual memory systems must
deal.

In the current version, Mach does not allow external memory managers
to affect the page-replacement algorithm directly. Mach does not export the
memory-access information that would be needed for an external task to select

B.6 Memory Management 879

the least recently used page, for instance. Methods of providing such informa-
tion are currently under investigation. An external memory manager is still
useful for a variety of reasons, however:

• It may reject the kernel’s replacement victim if it knows of a better candidate
(for instance, MRU page replacement).

• It may monitor the memory object it is backing, and request pages to be
paged out before the memory usage invokes Mach’s pageout daemon.

• It is especially important in maintaining consistency of secondary storage
for threads on multiple processors, as we shall show in Section B.6.3.

• It can control the order of operations on secondary storage, to enforce
consistency constraints demanded by database management systems. For
example, in transaction logging, transactions must be written to a log file
on disk before they modify the database data.

• It can control mapped file access.

B.6.3 Shared Memory

Mach uses shared memory to reduce the complexity of various system facilities,
as well as to provide these features in an efficient manner. Shared memory
generally provides extremely fast interprocess communication, reduces over-
head in file management, and helps to support multiprocessing and database
management. Mach does not use shared memory for all these traditional
shared-memory roles, however. For instance, all threads in a task share that
task’s memory, so no formal shared-memory facility is needed within a task.
However, Mach must still provide traditional shared memory to support other
operating-system constructs, such as the UNIX fork system call.

It is obviously difficult for tasks on multiple machines to share memory, and
to maintain data consistency. Mach does not try to solve this problem directly;
rather, it provides facilities to allow the problem to be solved. Mach supports
consistent shared memory only when the memory is shared by tasks running
on processors that share memory. A parent task is able to declare which regions
of memory are to be inherited by its children, and which are to be readable–
writable. This scheme is different from copy-on-write inheritance, in which
each task maintains its own copy of any changed pages. A writable object is
addressed from each task’s address map, and all changes are made to the same
copy. The threads within the tasks are responsible for coordinating changes
to memory so that they do not interfere with one another (by writing to the
same location concurrently). This coordination may be done through normal
synchronization methods: critical sections or mutual-exclusion locks.

For the case of memory shared among separate machines, Mach allows the
use of external memory managers. If a set of unrelated tasks wishes to share

880 Appendix B The Mach System

a section of memory, the tasks may use the same external memory manager
and access the same secondary-storage areas through it. The implementor of
this system would need to write the tasks and the external pager. This pager
could be as simple or as complicated as needed. A simple implementation
would allow no readers while a page was being written to. Any write attempt
would cause the pager to invalidate the page in all tasks currently accessing
it. The pager would then allow the write and would revalidate the readers
with the new version of the page. The readers would simply wait on a page
fault until the page again became available. Mach provides such a memory
manager: the Network Memory Server (NetMemServer). For multicomputers,
the NORMA configuration of Mach 3.0 provides similar support as a standard
part of the kernel. This XMM subsystem allows multicomputer systems to use
external memory managers that do not incorporate logic for dealing with multi-
ple kernels; the XMM subsystem is responsible for maintaining data consistency
among multiple kernels that share memory, and makes these kernels appear to
be a single kernel to the memory manager. The XMM subsystem also imple-
ments virtual copy logic for the mapped objects that it manages. This virtual
copy logic includes both copy-on-reference among multicomputer kernels, and
sophisticated copy-on-write optimizations.

B.7 Programmer Interface

There are several levels at which a programmer may work within Mach. There
is, of course, the system-call level, which, in Mach 2.5, is equivalent to the 4.3BSD
system-call interface. Version 2.5 includes most of 4.3BSD as one thread in the
kernel. A BSD system call traps to the kernel and is serviced by this thread on
behalf of caller, much as standard BSD would handle it. The emulation is not
multithreaded, so it has limited efficiency.

Mach 3.0 has moved from the single-server model to support of multiple
servers. It has therefore become a true microkernel without the full features
normally found in a kernel. Rather, full functionality can be provided via
emulation libraries, servers, or a combination of the two. In keeping with the
definition of a microkernel, the emulation libraries and servers run outside
the kernel at user level. In this way, multiple operating systems can run
concurrently on one Mach 3.0 kernel.

An emulation library is a set of routines that lives in a read-only part of a
program’s address space. Any operating-system calls the program makes are
translated into subroutine calls to the library. Single-user operating systems,
such as MS-DOS and the Macintosh operating system, have been implemented
solely as emulation libraries. For efficiency reasons, the emulation library lives
in the address space of the program needing its functionality, but in theory
could be a separate task.

B.8 Summary 881

More complex operating systems are emulated through the use of libraries
and one or more servers. System calls that cannot be implemented in the
library are redirected to the appropriate server. Servers can be multithreaded
for improved efficiency. BSD and OSF/1 are implemented as single multi-
threaded servers. Systems can be decomposed into multiple servers for greater
modularity.

Functionally, a system call starts in a task, and passes through the kernel
before being redirected, if appropriate, to the library in the task’s address space
or to a server. Although this extra transfer of control will decrease the efficiency
of Mach, this decrease is somewhat ameliorated by the ability for multiple
threads to be executing BSD-like code concurrently.

At the next higher programming level is the C Threads package. This
package is a run-time library that provides a C language interface to the basic
Mach threads primitives. It provides convenient access to these primitives,
including routines for the forking and joining of threads, mutual exclusion
through mutex variables (Section B.4.2), and synchronization through use of
condition variables. Unfortunately, it is not appropriate for the C Threads
package to be used between systems that share no memory (NORMA systems),
since it depends on shared memory to implement its constructs. There is
currently no equivalent of C Threads for NORMA systems. Other run-time
libraries have been written for Mach, including threads support for other
languages.

Although the use of primitives makes Mach flexible, it also makes many
programming tasks repetitive. For instance, significant amounts of code are
associated with sending and receiving messages in each task that uses messages
(which, in Mach, is most tasks). The designers of Mach therefore provide an
interface generator (or stub generator) called MIG. MIG is essentially a compiler
that takes as input a definition of the interface to be used (declarations of
variables, types and procedures), and generates the RPC interface code needed
to send and receive the messages fitting this definition and to connect the
messages to the sending and receiving threads.

B.8 Summary

The Mach operating system is designed to incorporate the many recent inno-
vations in operating-system research to produce a fully functional, technically
advanced operating system.

The Mach operating system was designed with the following three critical
goals in mind:

• Emulate 4.3BSD UNIX so that the executable files from a UNIX system can
run correctly under Mach.

882 Appendix B The Mach System

• Have a modern operating system that supports many memory models, and
parallel and distributed computing.

• Design a kernel that is simpler and easier to modify than is 4.3BSD.

As we have shown in this chapter, Mach is well on its way to achieving these
goals.

Mach 2.5 includes 4.3BSD in its kernel, which provides the emulation
needed but enlarges the kernel. This 4.3BSD code has been rewritten to provide
the same 4.3 functionality, but to use the Mach primitives. This change allows
the 4.3BSD support code to run in user space on a Mach 3.0 system.

Mach uses lightweight processes, in the form of multiple threads of execu-
tion within one task (or address space), to support multiprocessing and parallel
computation. Its extensive use of messages as the only communications method
ensures that protection mechanisms are complete and efficient. By integrating
messages with the virtual-memory system, Mach also ensures that messages
can be handled efficiently. Finally, by having the virtual-memory system use
messages to communicate with the daemons managing the backing store, Mach
provides great flexibility in the design and implementation of these memory-
object-managing tasks.

By providing low-level, or primitive, system calls from which more com-
plex functions may be built, Mach reduces the size of the kernel while per-
mitting operating-system emulation at the user level, much like IBM’s virtual-
machine systems.

Exercises

B.1 What three features of Mach make it appropriate for distributed process-
ing?

B.2 Name two ways that port sets are useful in implementing parallel pro-
grams.

B.3 Consider an application that maintains a database of information, and
provides facilities for other tasks to add, delete, and query the database.
Give three configurations of ports, threads, and message types that could
be used to implement this system. Which is the best? Explain your
answer.

B.4 Give the outline of a task that would migrate subtasks (tasks it creates) to
other systems. Include information about how it would decide when to
migrate tasks, which tasks to migrate, and how the migration would take
place.

B.5 Name two types of applications for which you would use the MIG pack-
age.

Bibliographical Notes 883

B.6 Why would someone use the low-level system calls, instead of the C
Threads package?

B.7 Why are external memory managers not able to replace the internal page-
replacement algorithms? What information would need to be made
available to the external managers for them to make page-replacement
decisions? Why would providing this information violate the principle
behind the external managers?

B.8 Why is it difficult to implement mutual exclusion and condition variables
in an environment where like-CPUs do not share any memory? What
approach and mechanism could be used to make such features available
on a NORMA system?

B.9 What are the advantages to rewriting the 4.3BSD code as an external, user-
level library, rather than leaving it as part of the Mach kernel? Are there
any disadvantages? Explain your answer.

Bibliographical Notes

The Accent operating system was described by Rashid and Robertson [1981].
An historical overview of the progression from an even earlier system, RIG,
through Accent to Mach was given by Rashid [1986]. General discussions
concerning the Mach model are offered by Tevanian and Smith [1989].

Accetta et al. [1986] presented an overview of the original design of Mach.
The Mach scheduler was described in detail by Tevanian et al. [1987a] and Black
[1990]. An early version of the Mach shared memory and memory-mapping
system was presented by Tevanian et al. [1987b].

The most current description of the C Threads package appears in Cooper
and Draves [1987]; MIG was described by Draves et al. [1989]. An overview
of these packages’ functionality and a general introduction to programming in
Mach was presented by Walmer and Thompson [1989] and Boykin et al. [1993].

Black et al. [1988] discussed the Mach exception-handling facility. A
multithreaded debugger based on this mechanism was described in Caswell
and Black [1989].

A series of talks about Mach sponsored by the OSF UNIX consortium is
available on videotape from OSF. Topics include an overview, threads, net-
working, memory management, many internal details, and some example
implementations of Mach. The slides from these talks were given in [OSF 1989].

On systems where USENET News is available (most educational institutions
in the United States, and some overseas), the news group comp.os.mach is used
to exchange information on the Mach project and its components.

An overview of the microkernel structure of Mach 3.0, complete with
performance analysis of Mach 2.5 and 3.0 compared to other systems, was given

884 Appendix B The Mach System

in Black et al. [1992]. Details of the kernel internals and interfaces of Mach 3.0
were provided in Loepere [1992]. Tanenbaum [1992] presented a comparison of
Mach and Amoeba. Discussions concerning parallelization in Mach and 4.3BSD
are offered by Boykin and Langerman [1990].

Ongoing research was presented at USENIX Mach and Micro-kernel Sym-
posia [USENIX 1990, USENIX 1991, and USENIX 1992b]. Active research areas
include virtual memory, real time, and security [McNamee and Armstrong
1990].

Credits 885

Credits

Figs. A.1, A.6, and A.8 reproduced with permission from Open Software
Foundation, Inc. Excerpted from Mach Lecture Series, OSF, October 1989,
Cambridge, Massachusetts.

Figs. A.1 and A.8 presented by R. Rashid of Carnegie Mellon University and
Fig. 20.7 presented by D. Julin of Carnegie Mellon University.

Figs. A.6 from Accetta/Baron/Bolosky/Golub/Rashid/Tevanian/Young,
“Mach: a new kernel foundation for UNIX development,” Proceedings of
Summer USENIX, June 1986, Atlanta, Georgia. Reprinted with permission of
the authors.

Appendix C

THE NACHOS
SYSTEM

By Thomas E. Anderson

University of California, Berkeley

I hear and I forget, I see and I remember,

I do and I understand.

–Chinese proverb

A good way to gain a deeper understanding of modern operating-system con-
cepts is to get your hands dirty—to take apart the code for an operating system
to see how it works at a low level, to build significant pieces of the operating
system yourself, and to observe the effects of your work. An operating-system
course project provides this opportunity to see how you can use basic concepts
to solve real-world problems. Course projects can also be valuable in many
other areas of computer science, from compilers and databases to graphics and
robotics. But a project is particularly important for operating systems, where
many of the concepts are best learned by example and experimentation.

That is why we created Nachos, an instructional operating system intended
for use as the course project for an undergraduate or first-year graduate course
in operating systems. Nachos includes code for a simple but complete working
operating system, a machine simulator that allows it to be used in a normal
UNIX workstation environment, and a set of sample assignments. Nachos

887

888 Appendix C The Nachos System

lets anyone explore all the major components of a modern operating system
described in this book, from threads and process synchronization, to file sys-
tems, to multiprogramming, to virtual memory, to networking. The assign-
ments ask you to design and implement a significant piece of functionality in
each of these areas.

Nachos is distributed without charge. It currently runs on both Digital
Equipment Corporation MIPS UNIX workstations and Sun SPARC workstations;
ports to other machines are in progress. See Section C.4 to learn how to obtain
a copy of Nachos.

Here, we give an overview of the Nachos operating system and the machine
simulator, and describe our experiences with the example assignments. Of
necessity, Nachos is evolving continually, because the field of operating systems
is evolving continually. Thus, we can give only a snapshot of Nachos; in Section
C.4 we explain how to obtain more up to date information.

C.1 Overview

Many of the earliest operating-system course projects were designed in
response to the development of UNIX in the mid-1970s. Earlier operating
systems, such as MULTICS and OS/360, were far too complicated for an
undergraduate to understand, much less to modify, in one semester.

Even UNIX itself is too complicated for that purpose, but UNIX showed that
the core of an operating system can be written in only a few dozen pages, with
a few simple but powerful interfaces. However, recent advances in operating
systems, hardware architecture, and software engineering have caused many
operating-systems projects developed over the past two decades to become
out-of-date. Networking and distributed applications are now commonplace.
Threads are crucial for the construction of both operating systems and higher-
level concurrent applications. And the cost–performance tradeoffs among
memory, CPU speed, and secondary storage are now different from those
imposed by core memory, discrete logic, magnetic drums, and card readers.

Nachos is intended to help people learn about these modern systems con-
cepts. Nachos illustrates and takes advantage of modern operating-systems
technology, such as threads and remote procedure calls; recent hardware
advances, such as RISCs and the prevalence of memory hierarchies; and mod-
ern software-design techniques, such as protocol layering and object-oriented
programming.

In designing Nachos, we faced constantly the tradeoff between simplicity
and realism in choosing what code to provide as part of the baseline system,
and what to leave for the assignments. We believe that a course project must
achieve a careful balance among the time that students spend reading code,
that they spend designing and implementing, and that they spend learning
new concepts. At one extreme, we could have provided nothing but bare

C.1 Overview 889

hardware, leaving a tabula rasa for students to build an entire operating system
from scratch. This approach is impractical, given the scope of topics to cover.
At the other extreme, starting with code that is too realistic would make it easy
to lose sight of key ideas in a forest of details.

Our approach was to build the simplest possible implementation for each
subsystem of Nachos; this provides a working example—albeit an overly
simplistic one—of the operation of each component of an operating system.
The baseline Nachos operating-system kernel includes a thread manager, a file
system, the ability to run user programs, and a simple network mailbox. As a
result of our emphasis on simplicity, the baseline kernel comprises about 2500
lines of code, about one-half of which are devoted to interface descriptions and
comments. (The hardware simulator takes up another 2500 lines, but you do
not need to understand the details of its operation to do the assignments.)
It is thus practical to read, understand, and modify Nachos during a single
semester course. By contrast, building a project around a system like UNIX
would add realism, but the UNIX 4.3BSD file system by itself, even excluding the
device drivers, comprises roughly 5000 lines of code. Since a typical course will
spend only about 2 to 3 weeks of the semester on file systems, size makes UNIX
impractical as a basis for an undergraduate operating-system course project.

We have found that the baseline Nachos kernel can demystify a number
of operating-system concepts that are difficult to understand in the abstract.
Simply reading and walking through the execution of the baseline system can
answer numerous questions about how an operating system works at a low
level, such as:

• How do all the pieces of an operating system fit together?

• How does the operating system start a thread? How does it start a process?

• What happens when one thread context switches to another thread?

• How do interrupts interact with the implementation of critical sections?

• What happens on a system call? What happens on a page fault?

• How does address translation work?

• Which data structures in a file system are on disk, and which are in mem-
ory?

• What data need to be written to disk when a user creates a file?

• How does the operating system interface with I/O devices?

• What does it mean to build one layer of a network protocol on another?

Of course, reading code by itself can be a boring and pointless exercise;
we addressed this problem by keeping the code as simple as possible, and by

890 Appendix C The Nachos System

designing assignments that modify the system in fundamental ways. Because
we start with working code, the assignments can focus on the more interesting
aspects of operating-system design, where tradeoffs exist and there is no single
right answer.

C.2 Nachos Software Structure

Before we discuss the sample assignments in detail, we first outline the struc-
ture of the Nachos software. Figure C.1 illustrates how the major pieces in
Nachos fit together. Like many earlier instructional operating systems, Nachos
runs on a simulation of real hardware. Originally, when operating-system
projects were first being developed in the 1970s and early 1980s, the reason for
using a simulator was to make better use of scarce hardware resources. Without
a simulator, each student would need her own physical machine to test new
versions of the kernel. Now that personal computers are commonplace, is there
still a reason to develop an operating system on a simulator, rather than on
physical hardware?

application

shell

MIPS simulation

syscalls virtual memory

address spaces

file system

thread management

machine-dependent OS layer

I/O device simulation

RPC

TCP

user
programs

portable
OS kernel

hardware
simulation

UNIX process

application

Figure C.1 How the major pieces in Nachos fit together.

C.2 Nachos Software Structure 891

We believe that the answer is yes, because using a simulator makes debug-
ging easier. On real hardware, operating-system behavior is nondeterminis-
tic; depending on the precise timing of interrupts, the operating system may
take one path through its code or another. Synchronization can help to make
operating-system behavior more predictable, but what if we have a bug in our
synchronization code such that two threads can access the same data structure
at the same time? The kernel may behave correctly most of the time, yet crash
occasionally. Without being able to repeat the behavior that led to the crash,
however, it would be difficult to find the root cause of the problem. Running on
a simulator, rather than on real hardware, allows us to make system behavior
repeatable. Of course, debugging nonrepeatable execution sequences is part
of life for professional operating-system engineers, but it did not seem advis-
able for us to make this experience part of anyone’s introduction to operating
systems.

Running on simulated hardware has other advantages. During debugging,
it is important to be able to make a change to the system quickly, to recompile,
and to test the change to see whether it fixed the problem. Using a simulator
reduces the time required for this edit–compile–debug cycle, because other-
wise the entire system has to be rebooted to test a new version of the kernel.
Moreover, normal debugging tools do not work on operating-system kernels,
because, for example, if the kernel stops at a breakpoint, the debugger can-
not use the kernel to print the prompt for the next debugging command. In
practice, debugging an operating-system kernel on real hardware requires two
machines: one to run the kernel under test, and the other to run the debugger.
For these reasons, many commercial operating-system development projects
now routinely use simulators to speed development.

One approach would be to simulate the entire workstation hardware,
including fetching, decoding, and executing each kernel- or user-mode instruc-
tion in turn. Instead, we take a shortcut for performance. The Nachos kernel
code executes in native mode as a normal (debuggable) UNIX process linked
with the hardware simulator. The simulator surrounds the kernel code, making
it appear as though it is running on real hardware. Whenever the kernel code
accesses an I/O device—such as a clock chip, a disk, a network controller, or a
console—the simulator is invoked to perform the I/O activity. For instance, the
simulator implements disk I/O using UNIX file routines; it implements network
packet transfer via UNIX sockets.

In addition, we simulate each instruction executed in user mode. Whenever
the kernel gives up control to run application code, the simulator fetches each
application instruction in turn, checks for page faults or other exceptions, and
then simulates its execution. When an application page fault or hardware
interrupt occurs, the simulator passes control back to the kernel for processing,
as the hardware would in a real system.

Thus, in Nachos, user applications, the operating-system kernel, and the
hardware simulator run together in a normal UNIX process. The UNIX process

892 Appendix C The Nachos System

thus represents a single workstation running Nachos. The Nachos kernel,
however, is written as though it were running on real hardware. In fact, we
could port the Nachos kernel to a physical machine simply by replacing the
hardware simulation with real hardware and a few machine-dependent device-
driver routines.

Nachos is different from earlier systems in several significant ways:

1. We can run normal compiled C programs on the Nachos kernel, because we
simulate a standard, well-documented, instruction set (MIPS R2/3000 inte-
ger instructions) for user-mode programs. In the past, operating-system
projects typically simulated their own ad hoc instruction set, requiring user
programs to be written in a special-purpose assembly language. However,
because the R2/3000 is a RISC, it is straightforward to simulate its instruction
set. In all, the MIPS simulation code is only about 10 pages long.

2. We simulate accurately the behavior of a network of workstations, each
running a copy of Nachos. We connect Nachos “machines,” each running
as a UNIX process, via UNIX sockets, simulating a local-area network. A
thread on one “machine” can then send a packet to a thread running on
a different “machine”; of course, both are simulated on the same physical
hardware.

3. The simulation is deterministic, and kernel behavior is reproducible.
Instead of using UNIX signals to simulate asynchronous devices such as the
disk and the timer, Nachos maintains a simulated time that is incremented
whenever a user program executes an instruction and whenever a call
is made to certain low-level kernel routines. Interrupt handlers are then
invoked when the simulated time reaches the appropriate point. At
present, the precise timing of network packet delivery is not reproducible,
although this limitation may be fixed in later versions of Nachos.

4. The simulation is randomizable to add unpredictable, but repeatable,
behavior to the kernel thread scheduler. Our goal was to make it easy to test
kernel behavior given different interleavings of the execution of concurrent
threads. Simulated time is incremented whenever interrupts are enabled
within the kernel (in other words, whenever any low-level synchronization
routine, such as semaphore P or V, is called); after a random interval of sim-
ulated time, the scheduler will cause the current thread to be time sliced. As
another example, the network simulation randomly chooses which packets
to drop. Provided that the initial seed to the random number generator is
the same, however, the behavior of the system is repeatable.

5. We hide the hardware simulation from the rest of Nachos via a machine-
dependent interface layer. For example, we define an abstract disk that
accepts requests to read and write disk sectors and provides an interrupt
handler to be called on request completion. The details of the disk sim-
ulator are hidden behind this abstraction, in much the same way that

C.3 Sample Assignments 893

disk-device–specific details are isolated in a normal operating system. One
advantage to using a machine-dependent interface layer is to make clear
which portions of Nachos can be modified (the kernel and the applications)
and which portions are off-limits (the hardware simulation—at least until
you take a computer-architecture course).

C.3 Sample Assignments
Nachos contains five major components, each the focus of one assignment given
during the semester: thread management and synchronization, the file system,
user-level multiprogramming support, the virtual-memory system, and net-
working. Each assignment is designed to build on previous ones; for instance,
every part of Nachos uses thread primitives for managing concurrency. This
design reflects part of the charm of developing operating systems: You get to
use what you build. It is easy, however, to change the assignments or to do
them in a different order.

In Sections C.3.1 through C.3.5, we discuss each of the five assignments
in turn, describing what hardware-simulation facilities and operating-system
structures we provide, and what we ask you to implement. Of course, because
Nachos is continuing to evolve, what is described here is a snapshot of what
is available at the time of printing. Section C.4 explains how to obtain more
up-to-date information.

The assignments are intended to be of roughly equal size, each taking
approximately 3 weeks of a 15-week (semester) course, assuming that two
people work together on each. The file-system assignment is the most difficult
of the five; the multiprogramming assignment is the least difficult. Faculty who
have used Nachos say that they find it useful to spend 1/2 to 1 hour per week
discussing the assignments. We have found it useful for faculty to conduct a
design review with each pair of students the week before each assignment is
due.

Nachos is intended to encourage a quantitative approach to operating-
system design. Frequently, the choice of how to implement an operating-
system function reduces to a tradeoff between simplicity and performance.
Making informed decisions about tradeoffs is one of the key tasks to learn in
an undergraduate operating-system course. The Nachos hardware simulation
reflects current hardware performance characteristics (except that kernel execu-
tion time is estimated, rather than being measured directly). The assignments
exploit this feature by asking that you explain and optimize the performance of
your implementations on simple benchmarks.

The Nachos kernel and simulator are implemented in a subset of C++.
Object-oriented programming is becoming more popular, and it is a natural
idiom for stressing the importance of modularity and clean interfaces in build-
ing systems. Unfortunately, C++ is a complicated language; thus, to simplify
matters, we omitted certain aspects from standard C++: derived classes, oper-

894 Appendix C The Nachos System

ator and function overloading, C++ streams, and generics. We also kept inlines
to a minimum. The Nachos distribution includes a short primer to help people
who know C to learn our subset of C++; we have found that our students pick
up this subset quickly.

C.3.1 Thread Management

The first assignment introduces the concepts of threads and concurrency. The
baseline Nachos kernel provides a basic working thread system and an imple-
mentation of semaphores; the assignment is to implement Mesa-style locks and
condition variables using semaphores, and then to implement solutions to a
number of concurrency problems using these synchronization primitives.

In much the same way as understanding pointers can be difficult for begin-
ning programmers, understanding concurrency requires a conceptual leap.
We believe that a good way to learn about concurrency is to take a hands-
on approach. Nachos helps to teach concurrency in two ways. First, thread
management in Nachos is explicit: it is possible to trace, literally statement by
statement, what happens during a context switch from one thread to another,
from the perspectives of an outside observer and of the threads involved. We
believe that this experience is crucial to demystifying concurrency. Precisely
because C and C++ allow nothing to be swept under the carpet, concurrency
may be easier to understand (although more difficult to use) in these program-
ming languages than in those explicitly designed for concurrency, such as Ada
or Modula-3.

Second, a working thread system, like that in Nachos, provides a chance
to practice writing, and testing, concurrent programs. Even experienced pro-
grammers find it difficult to think concurrently. When we first used Nachos, we
omitted many of the practice problems that we now include in the assignment,
thinking that students would see enough concurrency in the rest of the project.
Later, we realized that many students were still making concurrency errors even
in the final phase of the project.

Our primary goal in building the baseline thread system was simplicity, to
reduce the effort required to trace through the thread system’s behavior. The
implementation takes a total of about 10 pages of C++ and one page of MIPS
assembly code. For simplicity, thread scheduling is normally nonpreemptive,
but to emphasize the importance of critical sections and synchronization, we
have a command-line option that causes threads to be time sliced at “random,”
but repeatable, points in the program. Concurrent programs are correct only if
they work when a context switch can happen at any time.

C.3.2 File Systems

Real file systems can be complex artifacts. The UNIX file system, for example,
has at least three levels of indirection—the per-process file-descriptor table, the

C.3 Sample Assignments 895

system wide open-file table, and the in-core inode table—before you even get
to disk blocks. As a result, to build a file system that is simple enough to read
and understand in a couple of weeks, we were forced to make some difficult
choices about where to sacrifice realism.

We provide a basic working file system, stripped of as much functionality as
possible. Although the file system has an interface similar to that of UNIX (cast
in terms of C++ objects), it also has many significant limitations with respect to
commercial file systems: there is no synchronization (only one thread at a time
can access the file system), files have a very small maximum size, files have a
fixed size once created, there is no caching or buffering of file data, the file name
space is completely flat (there is no hierarchical directory structure), and there is
no attempt to provide robustness across machine and disk crashes. As a result,
the basic file system takes only about 15 pages of code.

The assignment is (1) to correct some of these limitations, and (2) to improve
the performance of the resulting file system. We list a few possible optimiza-
tions, such as caching and disk scheduling, but part of the exercise is to decide
which solutions are the most cost effective.

At the hardware level, we provide a disk simulator, which accepts read
sector and write sector requests and signals the completion of an operation
via an interrupt. The disk data are stored in a UNIX file; read and write
sector operations are performed using normal UNIX file reads and writes. After
the UNIX file is updated, we calculate how long the simulated disk operation
should have taken (from the track and sector of the request), and set an interrupt
to occur that far in the future. Read and write sector requests (emulating
hardware) return immediately; higher-level software is responsible for waiting
until the interrupt occurs.

We made several mistakes in developing the Nachos file system. In our
first attempt, the file system was much more realistic than the current one, but
it also took more than four times as much code. We were forced to rewrite it
to cut it down to code that could be read and understood quickly. When we
handed out this simpler file system, we did not provide sufficient code for it
to be working completely; we left out file read and file write to be written as
part of the assignment. Although these functions are fairly straightforward
to implement, the fact that the code did not work meant that students had
difficulty understanding how each of the pieces of the file system fit with the
others.

We also initially gave students the option of which limitation to fix; we
found that students learned the most from fixing the first four listed. In par-
ticular, the students who chose to implement a hierarchical directory structure
found that, although it was conceptually simple, the implementation required
a relatively large amount of code.

Finally, many modern file systems include some form of write-ahead log-
ging or log structure, simplifying crash recovery. The assignment now com-
pletely ignores this issue, but we are currently looking at ways to do crash

896 Appendix C The Nachos System

recovery by adding simple write-ahead logging code to the baseline Nachos
file system. As it stands, the choice of whether or not to address crash recovery
is simply a tradeoff. In the limited amount of time available, we ask students to
focus on how basic file systems work, how the file abstraction allows disk data
layout to be changed radically without changing the file-system interface, and
how caching can be used to improve I/O performance.

C.3.3 Multiprogramming

In the third assignment, we provide code to create a user address space, to load
a Nachos file containing an executable image into user memory, and then to run
the program. The initial code is restricted to running only a single user program
at a time. The assignment is to expand this base to support multiprogramming,
to implement a variety of system calls (such as UNIX fork and exec) as well as
a user-level shell, and to optimize the performance of the resulting system on a
mixed workload of I/O- and CPU-bound jobs.

Although we supply little Nachos kernel code as part of this assignment,
the hardware simulation does require a fair amount of code. We simulate the
entire MIPS R2/3000 integer instruction set and a simple single-level page-table
translation scheme. (For this assignment, a program’s entire virtual address
space must be mapped into physical memory; true virtual memory is left for
assignment 4.) In addition, we provide an abstraction that hides most of the
details of the MIPS object-code format.

This assignment requires few conceptual leaps, but it does tie together the
work of the previous two assignments, resulting in a usable—albeit limited
—operating system. Because the simulator can run C programs, it is easy to
write utility programs (such as the shell or UNIX cat) to exercise the system.
(One overly ambitious student attempted unsuccessfully to port emacs.) The
assignment illustrates that there is little difference between writing user code
and writing operating-system kernel code, except that user code runs in its own
address space, isolating the kernel from user errors.

One important topic that we chose to leave out (again, as a tradeoff against
time constraints) is the trend toward a small-kernel operating-system struc-
ture, where pieces of the operating system are split off into user-level servers.
Because of Nachos’ modular design, it would be straightforward to move
Nachos toward a small-kernel structure, except that (1) we have no symbolic
debugging support for user programs, and (2) we would need a stub compiler
to make it easy to make remote procedure calls across address spaces. One
reason for adopting a micro-kernel design is that it is easier to develop and
debug operating-system code as a user-level server than if the code is part of
the kernel. Because Nachos runs as a UNIX process, the reverse is true: It is
easier to develop and debug Nachos kernel code than application code running
on top of Nachos.

C.3 Sample Assignments 897

C.3.4 Virtual Memory

Assignment 4 is to replace the simple memory-management system from the
previous assignment with a true virtual-memory system—that is, one that
presents to each user program the abstraction of an (almost) unlimited virtual-
memory size by using main memory as a cache for the disk. We provide no new
hardware or operating-system components for this assignment.

The assignment has three parts. The first part is to implement the mech-
anism for page-fault handling—the kernel must catch the page fault, find the
needed page on disk, find a page frame in memory to hold the needed page
(writing the old contents of the page frame to disk if the page frame is dirty),
read the new page from disk into memory, adjust the page-table entry, and then
resume the execution of the program. This mechanism can take advantage of
the code written for the previous assignments: The backing store for an address
space can be represented simply as a Nachos file, and synchronization is needed
when multiple page faults occur concurrently.

The second part of the assignment is to devise a policy for managing the
memory as a cache—for deciding which page to toss out when a new page
frame is needed, in what circumstances (if any) to do read-ahead, when to write
unused dirty pages back to disk, and how many pages to bring in before starting
to run a program.

These policy questions can have a large effect on overall system perfor-
mance, in part because of the large and increasing gap between CPU speed
and disk latency—this gap has widened by two orders of magnitude in only
the past decade. Unfortunately, the simplest policies often have unacceptable
performance. So that realistic policies are encouraged, the third part of the
assignment is to measure the performance of the paging system on a matrix
multiply program where the matrices do not fit in memory. This workload
is not meant to be representative of real-life paging behavior, but it is simple
enough to illustrate the influence of policy changes on application performance.
Further, the application illustrates several of the problems with caching: Small
changes in the implementation can have a large effect on performance.

C.3.5 Networking

Although distributed systems have become increasingly important commer-
cially, most instructional operating systems do not have a networking compo-
nent. To address this omission, we chose the capstone of the project to be to
write a significant and interesting distributed application.

At the hardware level, each UNIX process running Nachos represents a
uniprocessor workstation. We simulate the behavior of a network of worksta-
tions by running multiple copies of Nachos, each in its own UNIX process, and
by using UNIX sockets to pass network packets from one Nachos “machine” to
another. The Nachos operating system can communicate with other systems

898 Appendix C The Nachos System

by sending packets into the simulated network; the transmission is accom-
plished by socket send and receive. The Nachos network provides unreliable
transmission of limited-sized packets from machine to machine. The likeli-
hood that any packet will be dropped can be set as a command-line option,
as can the seed used to determine which packets are “randomly” chosen to be
dropped. Packets are dropped but are never corrupted, so that checksums are
not required.

To show how to use the network and, at the same time, to illustrate
the benefits of layering, the Nachos kernel comes with a simple post-office
protocol layered on top of the network. The post-office layer provides a set
of mailboxes that route incoming packets to the appropriate waiting thread.
Messages sent through the post office also contain a return address to be used
for acknowledgments.

The assignment is first to provide reliable transmission of arbitrary-sized
packets, and then to build a distributed application on top of that service.
Supporting arbitrary-sized packets is straightforward—you need merely to
split any large packet into fixed-sized pieces, to add fragment serial numbers,
and to send the pieces one by one. Ensuring reliability is more interesting,
requiring a careful analysis and design. To reduce the time required to do the
assignment, we do not ask you to implement congestion control or window
management, although of course these are important issues in protocol design.

The choice of how to complete the project is left open. We do make a
few suggestions: multiuser UNIX talk, a distributed file system with caching, a
process-migration facility, distributed virtual memory, a gateway protocol that
is robust to machine crashes. Perhaps the most interesting application that a
student built (that we know of) was a distributed version of the “battleship”
game, with each player on a different machine. This application illustrated
the role of distributed state, since each machine kept only its local view of
the gameboard; it also exposed several performance problems in the hardware
simulation, which we have since fixed.

Perhaps the biggest limitation of the current implementation is that we
do not model network performance correctly, because we do not keep the
timers on each of the Nachos machines synchronized with one another. We
are currently working on fixing this problem, using distributed simulation
techniques for efficiency. These techniques will allow us to make performance
comparisons between alternate implementations of network protocols; they
will also enable us to use the Nachos network as a simulation of a message-
passing multiprocessor.

C.4 Information on Obtaining a Copy of Nachos

You can obtain Nachos by anonymous ftp from the machine ftp.cs.berkeley.edu
by following these steps:

C.4 Information on Obtaining a Copy of Nachos 899

1. Use UNIX ftp to access ftp.cs.berkeley.edu:

ftp ftp.cs.berkeley.edu

2. You will get a login prompt. Type the word anonymous, and then use your
e-mail address as the password.

Name: anonymous
Password: tea@cs.berkeley.edu (for example)

3. You are now in ftp. Move to the Nachos subdirectory.

ftp> cd ucb/nachos

4. You must remember to turn on “binary” mode in ftp; unfortunately, if you
forget to do so, when you fetch the Nachos file, it will be garbled without
any kind of warning message. This error is one of the most common that
people make in obtaining software using anonymous ftp.

ftp> binary

5. You can now copy the compressed UNIX tar file containing the Nachos
distribution to your machine. The software will automatically enroll you
in a mailing list for announcements of new releases of Nachos; you can
remove yourself from this list by sending e-mail to nachos@cs.berkeley.edu.

ftp> get nachos.tar.Z

6. Exit the ftp program:

ftp> quit

7. Decompress and detar to obtain the Nachos distribution. (If the decom-
press step fails, you probably forgot to set binary mode in ftp in step 4. You
will need to start over.)

uncompress nachos.tar.Z
tar -xf nachos.tar

900 Appendix C The Nachos System

8. The preceding steps will produce several files, including the code for the
baseline Nachos kernel, the hardware simulator, documentation on the
sample assignments, and the C++ primer. There will also be a README
file to get you started: It explains how to build the baseline system, how
to print out documentation, and which machine architectures are currently
supported.

cat README

Mendel Rosenblum at Stanford has ported the Nachos kernel to run on Sun
SPARC workstations, although user programs running on top of Nachos must
still be compiled for the MIPS R2/3000 RISC processor. Ports to machines other
than Digital Equipment Corporation MIPS UNIX workstations and Sun SPARC
workstations are in progress. Up-to-date information on machine availability
is included in the README file in the distribution. The machine dependence
comes in two parts. First, the Nachos kernel runs just like normal application
code on a UNIX workstation, but a small amount of assembly code is needed
in the Nachos kernel to implement thread context switching. Second, Nachos
simulates the instruction-by-instruction execution of user programs, to catch
page faults and other exceptions. This simulation assumes the MIPS R2/3000
instruction set. To port Nachos to a new machine, we replace the kernel
thread-switch code with machine-specific code, and rely on a C cross-compiler
to generate MIPS object code for each user program. (A cross-compiler is a
compiler that generates object code for one machine type while running on
a different machine type.) Because we rely on a cross-compiler, we do not
have to rewrite the instruction-set simulator for each port to a new machine.
The SPARC version of Nachos, for instance, comes with instructions on how to
cross-compile to MIPS on the SPARC.

Questions about Nachos and bug reports should be directed via e-mail
to nachos@cs.berkeley.edu. Questions can also be posted to the alt.os.nachos
newsgroup.

C.5 Conclusions

Nachos is an instructional operating system designed to reflect recent advances
in hardware and software technology, to illustrate modern operating-system
concepts, and, more broadly, to help teach the design of complex computer
systems. The Nachos kernel and sample assignments illustrate principles of
computer-system design needed to understand the computer systems of today
and of the future: concurrency and synchronization, caching and locality,
the tradeoff between simplicity and performance, building reliability from
unreliable components, dynamic scheduling, object-oriented programming, the
power of a level of translation, protocol layering, and distributed computing.

Bibliographical Notes 901

Familiarity with these concepts is valuable, we believe, even for those people
who do not end up working in operating-system development.

Bibliographical Notes

Wayne Christopher, Steve Procter, and Thomas Anderson (the author of this
appendix) did the initial implementation of Nachos in January 1992. The first
version was used for one term as the project for the undergraduate operating-
systems course at The University of California at Berkeley. We then revised
both the code and the assignments, releasing Nachos, Version 2 for public dis-
tribution in August 1992; Mendel Rosenblum ported Nachos to the Sun SPARC
workstation. The second version is currently in use at several universities
including Carnegie Mellon, Colorado State, Duke, Harvard, Stanford, State
University of New York at Albany, University of Washington, and, of course,
Berkeley; we have benefited tremendously from the suggestions and criticisms
of our early users.

In designing the Nachos project, we have borrowed liberally from ideas
found in other systems, including the TOY operating system project, originally
developed by Ken Thompson while he was at Berkeley, and modified exten-
sively by a collection of people since then; Tunis, developed by Rick Holt [Holt
1983]; and Minix, developed by Andy Tanenbaum [Tanenbaum 1987]. Lions
[1977] was one of the first people to realize that the core of an operating system
could be expressed in a few lines of code, and then used to teach people about
operating systems. The instruction-set simulator used in Nachos is largely
based on a MIPS simulator written by John Ousterhout.

We credit Lance Berc with inventing the acronym “Nachos” Not Another
Completely Heuristic Operating System.

902 Appendix C The Nachos System

Credits

This Appendix is derived from Christopher/Procter/Anderson, “The Nachos
Instructional Operating System,” Proceedings of Winter USENIX, January 1993.
Reprinted with permission of the authors.

Errata✳✳✳✳
OPERATING SYSTEM CONCEPTS, SIXTH EDITION

Silberschatz, Galvin, and Gagne
December 10, 2001

To Be Corrected in 2nd Printing:

page 11, section 1.3, first sentence: Personal Computers PCs ⇒ Personal Computers (PCs)

page 20, Figure 1.6 line 3 from the bottom: “no software” should come before “compliers”

page 64, fourth paragraph, line 4: count ⇒ cout

page 76, Figure 3.7, third light block fix line breaks:

signals terminal // handling ⇒ signals // terminal handling
swapping block I/O // system ⇒ swapping // block I/O system

page 80, Figure 3.10: add arrow to OS/2 application

POSIX application ⇒ POSIX server

page 92, line 2: Brinch-Hansen ⇒ Brinch Hansen

page 106, Figure 4.8, line 2: void main ⇒ main

page 108, last paragraph, second line: or by explicitly ⇒ or explicitly

page 109, fourth paragraph, last line: items can be the buffer st ⇒ items can be the buffer at

page 114, Section 4.5.5, paragraph 2 next to last line: RPC model a ⇒ an RPC models a

page 117, Section 4.6.1, first paragraph, third line: A socket is made up ⇒ A socket is identified

page 140, line 14: %d must be <= o\n ⇒ %d must be >= o\n

page 176, Figure 6.9: CPU173 ⇒ CPU 173

page 196, last line: number k !=0 ⇒ number [k]!=0

page 197, Figure 7.5, line 7: (number [j, j] < number [i , i])) ; ⇒ ((number [j], j) < (number [i] , i))) ;

page 212, line 3 from the bottom: region v when B do S; ⇒ region v when (B) S;

page 220, last line: Brinch-Hansen ⇒ Brinch Hansen

page 241, paragraph 3, lines 1 and 2: Brinch-Hansen ⇒ Brinch Hansen

page 291, line 8: 236 bytes (or 64GB) ⇒ 244 bytes (or 16TB)

page 299, Section 9.4.4.2, line 5: he mapped page frame ⇒ the mapped page frame

✳ Errors reported by: Don Colton, Elaine Cheong, Jim McQuillan, Alison Pechenick, Greg Sims, Sekar Sundarraj

Errata - page 2

page 349, paragraph 3, line 2: algorightm ⇒ algorithm
page 355, paragraph 2, line 2 from bottom: checking and investigating ⇒ clearing and investigating

page 377, Figure 11.1, under function, line 1: read to run ⇒ ready to run;

under usual extension, cell 6: rrf ⇒ rtf
under usual extension, cell 7: remove “mpeg, mov, rm”
under usual extension, cell 8: arc, zip, tar ⇒ ps, pdf, jpg

page 381, Figure 11.3 caption: remove extra period from end

page 389, paragraph 3, line 3 from bottom: (95, 95, NT, 2000) ⇒ (95, 98, NT, 2000, XP)

page 406, Section 11.6.4 last line: creation date ⇒ date of last modification

page 407, line 1: to block ⇒ to order

page 409, Bibliographical Notes, paragraph 3, line 2: VAX VMS ⇒ VAX/VMS

page 415, paragraph 3, line 5: system- wide ⇒ system-wide

page 415, last line: index ⇒ entry

page 427, paragraph 3, last line: non-varnil ⇒ non-nil

page 434, second paragraph, last line: functional generality ⇒ general functionality

page 444, paragraph 4 line 2: /etc/vfstab ⇒ /etc/vfstab

page 523, paragraph 1, line 3: switching disks is expensive, but switching tapes is not ⇒ switching tapes is

expensive, but switching disks is not

page 635, bullet 5: b3 is less than or equal to i ⇒ b3 is greater than or equal to i

page 810, in all 6 instances: Brinch-Hansen ⇒ Brinch Hansen

